
 (Affiliated to Osmania University & Approved by AICTE, New Delhi)

LABORATORY MANUAL

ADVANCED COMPUTER SKILLS LAB

BE III Semester (AICTE Model Curriculum): 2020-21

 NAME: ___

 ROLL NO:__

 BRANCH:__________________

 SEM:______________________________________

DEPARTMENT OF COMPUTER SCIENCE &
ENGINEERNG

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

Empower youth- Architects of Future World

VISION

To produce ethical, socially conscious and innovative professionals

who would contribute to sustainable technological development of the

society.

MISSION

To impart quality engineering education with latest technological

developments and interdisciplinary skills to make students succeed in

professional practice.

To encourage research culture among faculty and students by

establishing state of art laboratories and exposing them to modern

industrial and organizational practices.

To inculcate humane qualities like environmental consciousness,

leadership, social values, professional ethics and engage in independent

and lifelong learning for sustainable contribution to the society.

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT
OF

COMPUTER SCIENCE AND ENGINEERING

LABORATORY MANUAL

ADVANCED COMPUTER SKILLS LAB

Prepared

By

Er. Sandeep Ravikanti,

Assistant Professor.

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION & MISSION

VISION

 To become a leader in providing Computer Science & Engineering

education with emphasis on knowledge and innovation.

MISSION

• To offer flexible programs of study with collaborations to suit industry

needs.

• To provide quality education and training through novel pedagogical

practices.

• To expedite high performance of excellence in teaching, research and

innovations.

• To impart moral, ethical values and education with social responsibility.

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES

After 3-5 years of graduation, the graduates will be able to

PEO1: Apply technical concepts, Analyze, Synthesize data to Design and

create novel products and solutions for the real life problems.

PEO2: Apply the knowledge of Computer Science Engineering to pursue

higher education with due consideration to environment and

society.

PEO3: Promote collaborative learning and spirit of team work through

multidisciplinary projects

PEO4: Engage in life-long learning and develop entrepreneurial skills.

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROGRAM OUTCOMES

 Engineering graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal,

and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modelling to complex

engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the

Engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

PROGRAM SPECIFIC OUTCOMES

At the end of 4 years, Computer Science and Engineering graduates at MCET will be

able to:

PSO1: Apply the knowledge of Computer Science and Engineering in various domains like

networking and data mining to manage projects in multidisciplinary environments.

PSO2: Develop software applications with open-ended programming environments.

PSO3: Design and develop solutions by following standard software engineering principles

and implement by using suitable programming languages and platforms

Faculty of Engineering, O.U AICTE Model Curriculum with effect from Academic Year 2019-20

Course Code Course Title Core /
Elective

PC 253 CS Advanced Computer Skills Lab Core

Prerequisite
Contact Hours per Week

CIE SEE Credits
L T D P

- - - - 2 25 50 1

Course Objectives

➢ Introducing a new object oriented programming

➢ Enabling students to learn Big Data, Machine Learning etc.

➢ Preparing students to cope up with new Market tendencies

➢ To learn programs in MATLAB environment

➢ To handle Functions, Polynomials by using MATLAB commands

➢ Ability to solve any Mathematical functions

➢ To learn Mathematical Modelling in a new approach

➢ To plot Graphics (2-D) easily and effectively

Course Outcomes

After completing this course, the student will be able to

1. Implement basic syntax in python.

2. Analyse and implement different kinds of OOP concept in real world problems.

3. Implement MATLAB operations and graphic functions.

List of Programming Exercises:

1. Python Variables, Executing Python from the Command Line, Editing Python Files, Python

Reserved Words.

2. Comments, Strings and Numeric Data Types, Simple Input and Output.

3. Control Flow and Syntax, Indenting, if Statement, Relational Operators, Logical Operators,

Bit Wise Operators, while Loop, break and continue, for Loop, Lists, Tuples, Sets,

Dictionaries.

4. Functions: Passing parameters to a Function, Variable Number of Arguments, Scope, Passing

Functions to a Function, Mapping Functions in a Dictionary, Lambda, Modules, Standard

Modules.

5. OOP concepts: Classes, File Organization, Special Methods, Inheritance, Polymorphism,

Special Characters, Character Classes, Quantifiers, Dot Character, Greedy Matches,

Matching at Beginning or End, Match Objects, Compiling Regular Expressions.

6. MATLAB Menus, Toolbars, Computing with MATLAB, Script Files and the

Editor/Debugger, MATLAB help System.

7. MATLAB controls: Relational Logical Variables. Conditional Statements: if – else – elseif,

switch 2

10. Loops: for – while – break, continue. User-Defined Functions.

8. Arrays, Matrices and Matrix Operations Debugging MATLAB Programs. Working with Data

Files, and Graphing Functions: XY Plots – Sub-plots.

Suggested Readings:

1. Mark Summerfield,” Programming in Python

2. A Complete introduction to the Python Language”, Addison-Wesley Professional, 2009.

3. Martin C. Brown,” PYTHON: The Complete Reference”, McGraw-Hill, 2001.

4. W.J. Palm III, Introduction to MATLAB 7 for Engineers, McGraw-Hill International

Edition, 2005.

5. Wesley J Chun,” Core Python Applications Programming”, Prentice Hall, 2012.

6. Allen B Downey,” Think Python”, O’Reilly, 2012.

7. Stormy Attaway, “MATLAB: A Practical Introduction to Programming and Problem
Solving”.3rd Edition.

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Course Outcomes (CO’s):

SUBJECT NAME: ADVANCED COMPUTER SKILLS LAB CODE: PC253CS

SEMESTER: III

CO No. Course Outcomes Taxonomy

Level

PC253CS.1
Implement basic syntax in python. Creating

PC253CS.2
Analyse and implement different kinds of OOP concept
in python

Analyzing

PC253CS.3
Implement MATLAB operations and graphic functions Creating

PC253CS.4
Understand the Numbers, Math functions, Strings, List,

Tuples and Dictionaries in Python Understanding

PC253CS.5
Able to implement Decision Making statements and

Functions in python and MATLAB
Creating

PC253CS.6
Able to use understand Object oriented Principles in

Python
Understanding

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to

starting time), those who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the

lab with the program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim,

Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the lab

session.

b. Laboratory Record updated up to the last session experiments.

c. Formal dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer

system allotted to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab

observation note book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must

maintain the discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high end branded systems,

which should be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during

the lab sessions. Misuse of the equipment, misbehaviours with the staff and systems

etc., will attract severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out. If

anybody found loitering outside the lab / class without permission during working

hours will be treated seriously and punished appropriately.

10. Students should SHUT DOWN the computer system before he/she leaves the lab after

completing the task (experiment) in all aspects. He/she must ensure the system / seat is

kept properly.

Head of the Department Principal

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CODE OF CONDUCT FOR THE LABORATORY

• All students must observe the dress code while in the laboratory

• Footwear is NOT allowed

• Foods, drinks and smoking are NOT allowed

• All bags must be left at the indicated place

• The lab timetable must be strictly followed

• Be PUNCTUAL for your laboratory session

• All programs must be completed within the given time

• Noise must be kept to a minimum

• Workspace must be kept clean and tidy at all time

• All students are liable for any damage to system due to their own negligence

• Students are strictly PROHIBITED from taking out any items from the laboratory

• Report immediately to the lab programmer if any damages to equipment

BEFORE LEAVING LAB:

• Arrange all the equipment and chairs properly.

• Turn off / shut down the systems before leaving.

• Please check the laboratory notice board regularly for updates.

 Lab In – charge

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LIST OF EXPERIMENTS

SI.No. Name of the Experiment
Date of

Experiment

Date of

Submission

Page

No

Faculty

Signature

1. Python Variables, Executing

Python from the Command

Line, Editing Python Files,

Python Reserved Words

 7

2. Comments, Strings and

Numeric Data Types, Simple

Input and output

 11

3. Control Flow and Syntax,

Indenting, if Statement,

Relational Operators, Logical

Operators, Bit Wise Operators,

while Loop, break and

continue, for Loop, Lists,

Tuples, Sets, Dictionaries

 17

4. Functions: Passing parameters

to a Function, Variable Number

of Arguments, Scope, Passing

Functions to a Function,

Mapping Functions in a

Dictionary, Lambda, Modules,

Standard Modules

 32

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

5. OOP concepts: Classes, File

Organization, Special Methods,

Inheritance, Polymorphism,

Special Characters, Character

Classes, Quantifiers, Dot

Character, Greedy Matches,

Matching at Beginning or End,

Match Objects, Compiling

Regular Expressions

 45

6. MATLAB Menus, Toolbars,

Computing with MATLAB,

Script Files and the

Editor/Debugger, MATLAB

help System

 57

7. MATLAB controls: Relational

Logical Variables. Conditional

Statements: if – else – else if,

switch ,Loops: for – while –

break, continue. User-Defined

Functions

 71

8. Arrays, Matrices and Matrix

Operations Debugging

MATLAB Programs. Working

with Data Files, and Graphing

Functions: XY Plots – Sub-

plots

 79

ADDITIONAL EXPERIMENTS

SI.No. Name of the Experiment
Date of

Experiment

Date of

Submission

Page

No

Faculty

Signature

9. Python Program to detect if Two

Strings are Anagrams

 103

10. Python Program to Calculate the

Number of Digits and Letters in a

String

 105

11. Python Program to Check

Common Letters in Two Input

Strings

 107

12. Python Program to Find the

Factorial of a Number Using

Recursion

 109

13. Python Program to Find the Area

of a Rectangle Using Classes

 111

14. Python Program to Create a Class

which Performs Basic Calculator

Operations

 113

15. Extracting the individual

element(s) of a matrix

 117

16. Create a prompt to request user

input

 118

17. MAT LAB program to develop An

application - determine whether a

given year is a leap year (try to

change the given value of nyear

and observe the outcome)

 119

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 1

Introduction to Python Programming language

Python is developed by Guido van Rossum. Guido van Rossum started implementing Python in

1989. Python is a very simple programming language so even if you are new to programming, you

can learn python without facing any issues.

Interesting fact: Python is named after the comedy television show Monty Python’s Flying Circus.

It is not named after the Python snake.

Features of Python programming language

1. Readable: Python is a very readable language.

2. Easy to Learn: Learning python is easy as this is a expressive and high level programming

language, which means it is easy to understand the language and thus easy to learn.

3. Cross platform: Python is available and can run on various operating systems such as Mac,

Windows, Linux, Unix etc. This makes it a cross platform and portable language.

4. Open Source: Python is a open source programming language.

5. Large standard library: Python comes with a large standard library that has some handy codes

and functions which we can use while writing code in Python.

6. Free: Python is free to download and use. This means you can download it for free and use it in

your application. See: Open Source Python License. Python is an example of a FLOSS (Free/Libre

Open Source Software), which means you can freely distribute copies of this software, read its

source code and modify it.

7. Supports exception handling: If you are new, you may wonder what is an exception? An

exception is an event that can occur during program exception and can disrupt the normal flow of

https://docs.python.org/3/license.html

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 2

program. Python supports exception handling which means we can write less error prone code and

can test various scenarios that can cause an exception later on.

8. Advanced features: Supports generators and list comprehensions. We will cover these features

later.

9. Automatic memory management: Python supports automatic memory management which

means the memory is cleared and freed automatically. You do not have to bother clearing the

memory.

What Can You Do with Python?

You may be wondering what all are the applications of Python. There are so many applications of

Python, here are some of the them.

1. Web development – Web framework like Django and Flask are based on Python. They help you

write server side code which helps you manage database, write backend programming logic,

mapping urls etc.

2. Machine learning – There are many machine learning applications written in Python. Machine

learning is a way to write a logic so that a machine can learn and solve a particular problem on its

own. For example, products recommendation in websites like Amazon, Flipkart, eBay etc. is a

machine learning algorithm that recognises user’s interest. Face recognition and Voice recognition

in your phone is another example of machine learning.

3. Data Analysis – Data analysis and data visualisation in form of charts can also be developed

using Python.

4. Scripting – Scripting is writing small programs to automate simple tasks such as sending

automated response emails etc. Such type of applications can also be written in Python

programming language.

5. Game development – You can develop games using Python.

6. You can develop Embedded applications in Python.

7. Desktop applications – You can develop desktop application in Python using library like TKinter

or QT.

Python Programming Characteristics

• It provides rich data types and easier to read syntax than any other programming languages

• It is a platform independent scripted language with full access to operating system API's

• Compared to other programming languages, it allows more run-time flexibility

• It includes the basic text manipulation facilities of Perl and Awk

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 3

• A module in Python may have one or more classes and free functions

• Libraries in Pythons are cross-platform compatible with Linux, Macintosh, and Windows

• For building large applications, Python can be compiled to byte-code

• Python supports functional and structured programming as well as OOP

• It supports interactive mode that allows interacting Testing and debugging of snippets of

code

• In Python, since there is no compilation step, editing, debugging and testing is fast.

Python is commonly used by programmers to:

• Program video games

• Build Artificial Intelligence algorithms

• Program various scientific programs such as statistical models

How to install Python

Python installation is pretty simple, you can install it on any operating system such as Windows,

Mac OS X, Ubuntu etc.

To install the Python on your operating system, go to this link: https://www.python.org/downloads/.

You will see a screen like this.

This is the official Python website and it will detect the operating system and based on that it

would recommend you to download Python. Here I am using Mac OS X so it gave me the

download options for Python 2 and Python 3 for Mac OS X. I would recommend you to download

the latest version of Python 3 (Python 3.9.0 in the screenshot).

Installation steps are pretty simple. You just have to accept the agreement and finish the installation.

If you are using Mac OS X then you may notice that Python is already installed in your

system,however it would most likely be a Python 2 so you can download the latest Python 3 version

from here and install it in your system.

https://www.guru99.com/software-testing.html
https://www.python.org/downloads/

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 4

Install PyCharm Python IDE in Windows, Mac OS X, Linux/Unix

PyCharm Installation

1. Go to this link: https://www.jetbrains.com/pycharm/download/ and download the community

edition.

2. Install the downloaded file.

Mac: Double click the .dmg file and drag PyCharm to the Application Folder.

Windows: Double click the .exe file and follow the installation steps for the default PyCharm

installation.

Launch PyCharm

Mac: Go to the Applications folder and click on the PyCharm icon. Alternatively, you can drag the

icon to your dock to open the IDE quickly by clicking on the icon in dock.

Windows: If you have followed the default installation process then you can see the PyCharm icon

on your desktop. If you don’t find the icon then go to the PyCharm folder – C:\Program Files

(x86)\JetBrains\PyCharm 2017.1\bin (the path may be different for your system) and click on the

PyCharm.exe file to launch the IDE

First Python Project in PyCharm IDE

https://www.jetbrains.com/pycharm/download/

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 5

Creating Python Project in PyCharm

1. Click “Create New Project” in the PyCharm welcome screen.

2. Give a meaningful project name.

Writing and running your first Python Program

1. Now that we have created a Python project, it’s time to create a Python program file to write and

run our first Python program. To create a file, right click on the folder name > New > Python File

(as shown in the screenshot). Give the file name as “HelloWorld” and click ok.

2. Write the following code in the file.

This Python program prints Hello World on screen

print('Hello World')

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 6

3. Lets run the code. Right click on the HelloWorld.py file (or the name you have given while

creating Python file) in the left sidebar and click on ‘Run HelloWorld’.

4. You can see the output of the program at the bottom of the screen.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 7

PROGRAM 1

AIM : Python Variables, Executing Python from the Command Line, Editing Python Files,

Python Reserved Words.

A Python variable is a reserved memory location to store values. In other words, a variable in a

python program gives data to the computer for processing.

How to Declare and use a Variable

We will declare variable "a" and print it.

a=100

print a

Re-declare a Variable

You can re-declare the variable even after you have declared it once.

Here we have variable initialized to f=0.

Later, we re-assign the variable f to value "hello"

example:

Declare a variable and initialize it

f = 0

print f

re-declaring the variable works

f = 'hello'

print f

Delete a variable

You can also delete variable using the command del "variable name".

Example:

f = 11;

print(f)

del f

print(f)

Multiple Assignment

Python allows us to assign a value to multiple variables in a single statement which is also known

as multiple assignment.

We can apply multiple assignments in two ways either by assigning a single value to multiple

variables or assigning multiple values to multiple variables.

Assigning single value to multiple variables

x=y=z=50

print iple

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 8

print y

print z

Assigning multiple values to multiple variables:

a,b,c=5,10,15

print a

print b

print c

Running Python on your OS

Run the Python command-line interpreter, under your OS of choice,

Windows

Open Command line: Start menu -> Run and type cmd

Type: C:\python27\python.exe

Note: This is the default path for Python 2.7. If you are using a computer where Python is not

installed in this path, change the path accordingly.

Mac OS X

Open Command line: Finder -> Go menu -> Applications -> Terminal

Type: python

Linux

Open a command prompt (e.g. xterm)

Type: python

Using the IDLE interpreter:

Windows

Start IDLE: Start menu -> Programming -> Python 2.7 -> IDLE (Python GUI)

(alternatively, press Start menu and start typing "idle" and click when it appears.)

Mac OS X

Start IDLE: Finder -> Go menu -> Applications -> IDLE

(alternatively, it may be found under MacPorts. Or use SpotLight to search for "IDLE".)

Linux

Open a command prompt (e.g. xterm)

Type: idle

Run any plain text editor

Windows

Start Notepad: Start menu -> Accessories -> Notepad

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 9

Mac OS X

Start TextEdit: Finder -> Go menu -> Applications -> TextEdit

Alternative: Start TextWrangler: Finder -> Go menu -> Applications -> TextWrangler

Linux

Start nano: open a command prompt and type nano

Alternative: Start gedit: open a command prompt and type gedit

Run your script

Suppose your script is in "Z:\code\hw01\script.py" or ~/code/hw01/script.py on Unix-like

systems.

Windows

Open Command line: Start menu -> Run and type cmd

Type: C:\python27\python.exe Z:\code\hw01\script.py

Or if your system is configured correctly, you can drag and drop your script from Explorer

onto the Command Line window and press enter.

Mac OS X

Open Command line: Finder -> Go menu -> Applications -> Terminal

Type: python ~/code/hw01/script.py

Linux

Open a command prompt (e.g. xterm)

Type: python ~/code/hw01/script.py

What is a Python Keyword?

A python keyword is a reserved word which you can’t use as a name of your variable, class,

function etc. These keywords have a special meaning and they are used for special purposes in

Python programming language. For example – Python keyword “while” is used for while loop thus

you can’t name a variable with the name “while” else it may cause compilation error.

There are total 33 keywords in Python 3.7. To get the keywords list on your operating system, open

command prompt (terminal on Mac OS) and type “Python” and hit enter. After that type help() and

hit enter. Type keywords to get the list of the keywords for the current python version running on

your operating system.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 10

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 11

PROGRAM 2

AIM : Comments, Strings and Numeric Data Types, Simple Input and Output.

Python comments

A comment is text that doesn’t affect the outcome of a code, it is just a piece of text to let someone

know what you have done in a program or what is being done in a block of code. This is especially

helpful when someone else has written a code and you are analysing it for bug fixing or making a

change in logic, by reading a comment you can understand the purpose of code much faster

then by just going through the actual code.

Types of Comments in Python

There are two types of comments in Python.

1. Single line comment

2. Multiple line comment

Single line comment

In python we use # special character to start the comment. Lets take few examples to understand the

usage.

This is just a comment. Anything written here is ignored by Python

Multi-line comment:

To have a multi-line comment in Python, we use triple single quotes at the beginning and at the end

of the comment, as shown below.

'''

This is a

multi-line

comment

'''

character inside quotes

When # character is encountered inside quotes, it is not considered as comment. For example:

print("#this is not a comment")

Output:

#this is not a comment

Python Data Types

A variable can hold different types of values. For example, a person's name must be stored as a

string whereas its id must be stored as an integer.

Python provides various standard data types that define the storage method on each of them. The

data types defined in Python are given below.

1. Numbers

https://www.javatpoint.com/python-data-types#numbers

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 12

2. String

3. List

4. Tuple

5. Dictionary

In this section of the tutorial, we will give a brief introduction of the above data types. We will

discuss each one of them in detail later in this tutorial.

Numbers

Number stores numeric values. Python creates Number objects when a number is assigned to a

variable. For example;

a = 3 , b = 5 #a and b are number objects

Python supports 4 types of numeric data.

1. int (signed integers like 10, 2, 29, etc.)

2. long (long integers used for a higher range of values like 908090800L, -0x1929292L, etc.)

3. float (float is used to store floating point numbers like 1.9, 9.902, 15.2, etc.)

4. complex (complex numbers like 2.14j, 2.0 + 2.3j, etc.)

Python allows us to use a lower-case L to be used with long integers. However, we must always use

an upper-case L to avoid confusion.

A complex number contains an ordered pair, i.e., x + iy where x and y denote the real and

imaginary parts respectively).

String

The string can be defined as the sequence of characters represented in the quotation marks. In

python, we can use single, double, or triple quotes to define a string.

String handling in python is a straightforward task since there are various inbuilt functions and

operators provided.

In the case of string handling, the operator + is used to concatenate two strings as the

operation "hello"+" python" returns "hello python".

The operator * is known as repetition operator as the operation "Python " *2 returns "Python Python

".

The following example illustrates the string handling in python.

str1 = 'hello javatpoint' #string str1

str2 = ' how are you' #string str2

print (str1[0:2]) #printing first two character using slice operator

print (str1[4]) #printing 4th character of the string

print (str1*2) #printing the string twice

print (str1 + str2) #printing the concatenation of str1 and str2

https://www.javatpoint.com/python-data-types#string
https://www.javatpoint.com/python-data-types#list
https://www.javatpoint.com/python-data-types#tuple
https://www.javatpoint.com/python-data-types#dictionary

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 13

Output:

he

o

hello javatpointhello javatpoint

hello javatpoint how are you

List

Lists are similar to arrays in C. However; the list can contain data of different types. The items

stored in the list are separated with a comma (,) and enclosed within square brackets [].

We can use slice [:] operators to access the data of the list. The concatenation operator (+) and

repetition operator (*) works with the list in the same way as they were working with the strings.

Consider the following example.

l = [1, "hi", "python", 2]

print (l[3:]);

print (l[0:2]);

print (l);

print (l + l);

print (l * 3);

Output:

[2]

[1, 'hi']

[1, 'hi', 'python', 2]

[1, 'hi', 'python', 2, 1, 'hi', 'python', 2]

[1, 'hi', 'python', 2, 1, 'hi', 'python', 2, 1, 'hi', 'python', 2]

Tuple

A tuple is similar to the list in many ways. Like lists, tuples also contain the collection of the items

of different data types. The items of the tuple are separated with a comma (,) and enclosed in

parentheses ().

A tuple is a read-only data structure as we can't modify the size and value of the items of a tuple.

Let's see a simple example of the tuple.

t = ("hi", "python", 2)

print (t[1:]);

print (t[0:1]);

print (t);

print (t + t);

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 14

print (t * 3);

print (type(t))

t[2] = "hi";

Output:

('python', 2)

('hi',)

('hi', 'python', 2)

('hi', 'python', 2, 'hi', 'python', 2)

('hi', 'python', 2, 'hi', 'python', 2, 'hi', 'python', 2)

<type 'tuple'>

Traceback (most recent call last):

 File "main.py", line 8, in <module>

 t[2] = "hi";

TypeError: 'tuple' object does not support item assignment

Dictionary

Dictionary is an ordered set of a key-value pair of items. It is like an associative array or a hash

table where each key stores a specific value. Key can hold any primitive data type whereas value is

an arbitrary Python object.

The items in the dictionary are separated with the comma and enclosed in the curly braces {}.

Consider the following example.

d = {1:'Jimmy', 2:'Alex', 3:'john', 4:'mike'};

print("1st name is "+d[1]);

print("2nd name is "+ d[4]);

print (d);

print (d.keys());

print (d.values());

Output:

1st name is Jimmy

2nd name is mike

{1: 'Jimmy', 2: 'Alex', 3: 'john', 4: 'mike'}

[1, 2, 3, 4]

['Jimmy', 'Alex', 'john', 'mike']

A Program needs to interact with the user to accomplish the desired task; this is done using

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 15

 Input-Output facility. Input means the data entered by the user of the program. In python, we

have input() and raw_input () function available for Input.

1) input()

Syntax:

input (expression)

If prompt is present, it is displayed on monitor, after which the user can provide data from

keyboard. Input takes whatever is typed from the keyboard and evaluates it. As the input provided

is evaluated, it expects valid python expression. If the input provided is not correct then either

syntax error or exception is raised by python.

Example:

>>>x= input ("Enter data:")

Enter data: 34.78

>>>print(x)

34.78

2) raw_input()

Syntax:

raw_input (expression)

This input method fairly works in older versions (like 2.x).

If prompt is present, it is displayed on the monitor after which user can provide the data from

keyboard. The function takes exactly what is typed from keyboard, convert it to string and then

return it to the variable on LHS of '='.

Example: In interactive mode

>>>x=raw_input ('Enter your name: ')

Enter your name: ABC

x is a variable which will get the string (ABC), typed by user during the execution of program.

Typing of data for the raw_input function is terminated by enter key.

We can use raw_input() to enter numeric data also. In that case we typecast, i.e., change the data

type using function, the string data accepted from user to appropriate Numeric type.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 16

Example:

>>>y=int(raw_input("Enter your roll no."))

Enter your roll no. 5

It will convert the accepted string i.e., 5 to integer before assigning it to 'y'.

Print statement

Now how can we display the input values on screen? You might think that all we have to do is just

type the variable and press the Enter key. Well, it is true that we have been doing this the whole

time, but this only works when you are working on IDLE.

While creating real world python programs you have to write statements that outputs the strings, or

numbers explicitly.

We use the print statement to do so

Syntax:

print (expression/constant/variable)

Print evaluates the expression before printing it on the monitor. Print statement outputs an entire

(complete) line and then goes to next line for subsequent output (s). To print more than one item on

a single line, comma (,) may be used.

Example:

>>> print ("Hello")

Hello

>>> print (5.5)

5.5

>>> print (4+6)

10

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 17

 PROGRAM 3:

AIM: Control Flow and Syntax, Indenting, if Statement, Relational Operators, Logical

Operators, Bit Wise Operators, while Loop, break and continue, for Loop

Python Indentation

Indentation refers to the spaces at the beginning of a code line.

Where in other programming languages the indentation in code is for readability only, the

indentation in Python is very important.

Python uses indentation to indicate a block of code.

Example

if 5 > 2:

 print("Five is greater than two!")

Python will give you an error if you skip the indentation:

Example

Syntax Error:

if 5 > 2:

print("Five is greater than two!")

The number of spaces is up to you as a programmer, but it has to be at least one.

Example

if 5 > 2:

 print("Five is greater than two!")

if 5 > 2:

 print("Five is greater than two!")

Python Operators

Operators are used to perform operations on variables and values.

Python divides the operators in the following groups:

• Arithmetic operators

• Assignment operators

• Comparison operators

• Logical operators

• Identity operators

• Membership operators

• Bitwise operators

Relational Operators: Relational operators compares the values. It either

returns True or False according to the condition.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 18

Examples of Relational Operators

a = 13

b = 33

a > b is False

print(a > b)

a < b is True

print(a < b)

a == b is False

print(a == b)

a != b is True

print(a != b)

a >= b is False

print(a >= b)

a <= b is True

print(a <= b)

Output:

False

True

False

True

False

True

Logical Operators

Logical operators perform Logical AND, Logical OR and Logical NOT operations.

Examples of Logical Operator

a = True

b = False

Print a and b is False

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 19

print(a and b)

Print a or b is True

print(a or b)

Print not a is False

print(not a)

Output:

False

True

False

Bit Wise Operators

Bitwise operators acts on bits and performs bit by bit operation

Examples of Bitwise operators

a = 10

b = 4

Print bitwise AND operation

print(a & b)

Print bitwise OR operation

print(a | b)

Print bitwise NOT operation

print(~a)

print bitwise XOR operation

print(a ^ b)

print bitwise right shift operation

print(a >> 2)

print bitwise left shift operation

print(a << 2)

Output:

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 20

0

14

-11

14

2

40

3.A] Python Program to Reverse a Given Number

AIM:This is a Python Program to reverse a given number.

Problem Description

The program takes a number and reverses it.

Problem Solution

1. Take the value of the integer and store in a variable.

2. Using a while loop, get each digit of the number and store the reversed number in another

variable.

3. Print the reverse of the number.

4. Exit.

Program/Source Code

Here is the source code of the Python Program to reverse a given number.

 n=int(input("Enter number: "))

rev=0

while(n>0):

 dig=n%10

 rev=rev*10+dig

 n=n//10

print("Reverse of the number:",rev)

Program Explanation

1. User must first enter the value and store it in a variable n

2. The while loop is used and the last digit of the number is obtained by using the modulus operator.

3. The last digit is then stored at the one’s place, second last at the ten’s place and so on.

4. The last digit is then removed by truly dividing the number with 10.

5. This loop terminates when the value of the number is 0.

6. The reverse of the number is then printed.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 21

Runtime Test Cases

 Case 1:

Enter number: 124

Reverse of the number: 421

 Case 2:

Enter number: 4538

Reverse of the number: 8354

3.B] Python Program to Exchange the Values of Two Numbers Without Using a Temporary

Variable

AIM: This is a Python Program to exchange the values of two numbers without using a temporary

variable.

Problem Description

The program takes both the values from the user and swaps them without using temporary variable.

Problem Solution

1. Take the values of both the elements from the user.

2. Store the values in separate variables.

3. Add both the variables and store it in the first variable.

4. Subtract the second variable from the first and store it in the second variable.

5. Then, subtract the first variable from the second variable and store it in the first variable.

6. Print the swapped values.

7. Exit.

Program/Source Code

Here is source code of the Python Program to exchange the values of two numbers without using a

temporary variable. The program output is also shown below.

a=int(input("Enter value of first variable: "))

b=int(input("Enter value of second variable: "))

a=a+b

b=a-b

a=a-b

print("a is:",a," b is:",b)

Program Explanation

1. User must first enter the values for both the elements.

2. The first element is assigned the sum of the first two elements.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 22

3. Second element is assigned the difference between the sum in the first variable and the second

variable, which is basically the first element.

4. Later the first element is assigned the difference between the sum in the variable and the second

variable, which is the second element.

5. Then the swapped values are printed.

Runtime Test Cases

 Case 1

Enter value of first variable: 3

Enter value of second variable: 5

a is: 5 b is: 3

 Case 2

Enter value of first variable: 56

Enter value of second variable: 25

a is: 25 b is: 56

3.C] Python Program to Find the Sum of Digits in a Number

AIM: This is a Python Program to find the sum of digits in a number.

Problem Description

The program takes in a number and finds the sum of digits in a number.

Problem Solution

1. Take the value of the integer and store in a variable.

2. Using a while loop, get each digit of the number and add the digits to a variable.

3. Print the sum of the digits of the number.

4. Exit.

Program/Source Code

Here is the source code of the Python Program to find the sum of digits in a number. The program

output is also shown below.

 n=int(input("Enter a number:"))

tot=0

while(n>0):

 dig=n%10

 tot=tot+dig

 n=n//10

print("The total sum of digits is:",tot)

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 23

Program Explanation

1. User must first enter the value and store it in a variable.

2. The while loop is used and the last digit of the number is obtained by using the modulus operator.

3. The digit is added to another variable each time the loop is executed.

4. This loop terminates when the value of the number is 0.

5. The total sum of the number is then printed.

Runtime Test Cases

 Case 1:

Enter a number:1892

The total sum of digits is: 20

 Case 2:

Enter a number:157

The total sum of digits is: 13

3.D] Python Program to check if a Number is a Palindrome

AIM: This is a Python Program to check whether a given number is a palindrome.

Problem Description

The program takes a number and checks whether it is a palindrome or not.

Problem Solution

1. Take the value of the integer and store in a variable.

2. Transfer the value of the integer into another temporary variable.

3. Using a while loop, get each digit of the number and store the reversed number in another

variable.

4. Check if the reverse of the number is equal to the one in the temporary variable.

5. Print the final result.

6. Exit.

Program/Source Code

Here is source code of the Python Program to check whether a given number is a palindrome. The

program output is also shown below.

 n=int(input("Enter number:"))

temp=n

rev=0

while(n>0):

 dig=n%10

 rev=rev*10+dig

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 24

 n=n//10

if(temp==rev):

 print("The number is a palindrome!")

else:

 print("The number isn't a palindrome!")

Program Explanation

1. User must first enter the value of the integer and store it in a variable.

2. The value of the integer is then stored in another temporary variable.

3. The while loop is used and the last digit of the number is obtained by using the modulus operator.

4. The last digit is then stored at the one’s place, second last at the ten’s place and so on.

5. The last digit is then removed by truly dividing the number with 10.

6. This loop terminates when the value of the number is 0.

7. The reverse of the number is then compared with the integer value stored in the temporary

variable.

8. If both are equal, the number is a palindrome.

9. If both aren’t equal, the number isn’t a palindrome.

10. The final result is then printed.

Runtime Test Cases

 Case 1

Enter number: 121

The number is a palindrome!

 Case 2

Enter number: 567

The number isn't a palindrome!

3.E] Python Program to Find the LCM of Two Numbers

This is a Python Program to find the LCM of two numbers.

Problem Description

The program takes two numbers and prints the LCM of two numbers.

Problem Solution

1. Take in both the integers and store it in separate variables.

2. Find which of the integer among the two is smaller and store it in a separate variable.

3. Use a while loop whose condition is always True until break is used.

4. Use an if statement to check if both the numbers are divisible by the minimum number and

increment otherwise.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 25

5. Print the final LCM.

6. Exit.

Program/Source Code

Here is source code of the Python Program to find the LCM of two numbers. The program output is

also shown below.

a=int(input("Enter the first number:"))

b=int(input("Enter the second number:"))

if(a>b):

 min1=a

else:

 min1=b

while(1):

 if(min1%a==0 and min1%b==0):

 print("LCM is:",min1)

 break

 min1=min1+1

Program Explanation

1. User must enter both the numbers and store it in separate variables.

2. An if statement is used to find out which of the numbers is smaller and store in a minimum

variable.

3. Then a while loop is used whose condition is always true (or 1) unless break is used.

4. Then an if statement within the loop is used to check whether the value in the minimum variable

is divisible by both the numbers.

5. If it is divisible, break statement breaks out of the loop.

6. If it is not divisible, the value in the minimum variable is incremented.

7. The final LCM is printed.

Runtime Test Cases

 Case 1:

Enter the first number:5

Enter the second number:3

LCM is: 15

 Case 2:

Enter the first number:15

Enter the second number:20

LCM is: 60

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 26

3.F] Python Program to Find the GCD of Two Numbers

This is a Python Program to find the GCD of two numbers.

Problem Description

The program takes two numbers and prints the GCD of two numbers.

Problem Solution

1. Import the fractions module.

2. Take in both the integers and store it in separate variables.

3. Use the in-built function to find the GCD of both the numbers.

4. Print the GCD.

5. Exit.

Program/Source Code

Here is source code of the Python Program to find the GCD of two numbers. The program output is

also shown below.

import fractions

a=int(input("Enter the first number:"))

b=int(input("Enter the second number:"))

print("The GCD of the two numbers is",fractions.gcd(a,b))

Program Explanation

1. Import the fractions module.

2. User must enter both the numbers and store it in separate variables.

3. The in-built function of fractions.gcd(a,b) is used where a and b are the variables containing the

integer values.

4. The final GCD is printed.

Runtime Test Cases

 Case 1:

Enter the first number:15

Enter the second number:5

The GCD of the two numbers is 5

 Case 2:

Enter the first number:105

Enter the second number:222

The GCD of the two numbers is 3

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 27

3.G]Python Program to Check if a Number is a Prime Number

This is a Python Program to check if a number is a prime number.

Problem Description

The program takes in a number and checks if it is a prime number.

Problem Solution

1. Take in the number to be checked and store it in a variable.

2. Initialize the count variable to 0.

3. Let the for loop range from 2 to half of the number (excluding 1 and the number itself).

4. Then find the number of divisors using the if statement and increment the count variable each

time.

5. If the number of divisors is lesser than or equal to 0, the number is prime.

6. Print the final result.

5. Exit.

Program/Source Code

Here is source code of the Python Program to check if a number is a prime number. The program

output is also shown below.

a=int(input("Enter number: "))

k=0

for i in range(2,a//2+1):

 if(a%i==0):

 k=k+1

if(k<=0):

 print("Number is prime")

else:

 print("Number isn't prime")

Program Explanation

1. User must enter the number to be checked and store it in a different variable.

2. The count variable is first initialized to 0.

3. The for loop ranges from 2 to the half of the number so 1 and the number itself aren’t counted as

divisors.

4. The if statement then checks for the divisors of the number if the remainder is equal to 0.

5. The count variable counts the number of divisors and if the count is lesser or equal to 0, the

number is a prime number.

6. If the count is greater than 0, the number isn’t prime.

7. The final result is printed.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 28

Runtime Test Cases

 Case 1:

Enter number: 7

Number is prime

 Case 2:

Enter number: 35

Number isn't prime

3.H] Python Program to Find the Largest Number in a List

This is a Python Program to find the largest number in a list.

Problem Description

The program takes a list and prints the largest number in the list.

Problem Solution

1. Take in the number of elements and store it in a variable.

2. Take in the elements of the list one by one.

3. Sort the list in ascending order.

4. Print the last element of the list.

5. Exit.

Program/Source Code

Here is source code of the Python Program to find the largest number in a list. The program output

is also shown below.

a=[]

n=int(input("Enter number of elements:"))

for i in range(1,n+1):

 b=int(input("Enter element:"))

 a.append(b)

a.sort()

print("Largest element is:",a[n-1])

Program Explanation

1. User must enter the number of elements and store it in a variable.

2. User must then enter the elements of the list one by one using a for loop and store it in a list.

3. The list should then be sorted.

4. Then the last element of the list is printed which is also the largest element of the list.

Runtime Test Cases

 Case 1:

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 29

Enter number of elements:3

Enter element:23

Enter element:567

Enter element:3

Largest element is: 567

 Case 2:

Enter number of elements:4

Enter element:34

Enter element:56

Enter element:24

Enter element:54

Largest element is: 56

3.I] Python Program to find the factorial of a number

This is a Python Program to find the factorial of a number without using recursion.

Problem Description

The program takes a number and finds the factorial of that number without using recursion.

Problem Solution

1. Take a number from the user.

2. Initialize a factorial variable to 1.

3. Use a while loop to multiply the number to the factorial variable and then decrement the number.

4. Continue this till the value of the number is greater than 0.

5. Print the factorial of the number.

6. Exit.

Program/Source Code

Here is source code of the Python Program to find the factorial of a number without using

recursion. The program output is also shown below.

n=int(input("Enter number:"))

fact=1

while(n>0):

 fact=fact*n

 n=n-1

print("Factorial of the number is: ")

print(fact)

Program Explanation

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 30

1. User must enter a number.

2. A factorial variable is initialized to 1.

3. A while loop is used to multiply the number to the factorial variable and then the number is

decremented each time.

4. This continues till the value of the number is greater than 0.

5. The factorial of the number is printed.

Runtime Test Cases

 Case 1:

Enter number:5

Factorial of the number is:

120

3.J] Python Program to Create a List of Tuples with the First Element as the Number and

Second Element as the Square of the Number

This is a Python Program to create a list of tuples with the first element as the number and the

second element as the square of the number.

Problem Description

The program takes a range and creates a list of tuples within that range with the first element as the

number and the second element as the square of the number.

Problem Solution

1. Take the upper and lower range for the numbers from the user.

2. A list of tuples must be created using list comprehension where the first element is the number

within the range and the second element is the square of the number.

3. This list of tuples is then printed.

4. Exit.

Program/Source Code

Here is source code of the Python Program to create a list of tuples with the first element as the

number and the second element as the square of the number. The program output is also shown

below.

l_range=int(input("Enter the lower range:"))

u_range=int(input("Enter the upper range:"))

a=[(x,x**2) for x in range(l_range,u_range+1)]

print(a)

Program Explanation

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 31

1. User must enter the upper and lower range for the numbers.

2. List comprehension must be used to create a list of tuples where the first number is the number

itself from the given range and the second element is a square of the first number.

3. The list of tuples which is created is printed.

Runtime Test Cases

 Case 1:

Enter the lower range:1

Enter the upper range:4

[(1, 1), (2, 4), (3, 9), (4, 16)]

 Case 2:

Enter the lower range:45

Enter the upper range:49

[(45, 2025), (46, 2116), (47, 2209), (48, 2304), (49, 2401)]

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 32

PROGRAM 4

AIM : Functions: Passing parameters to a Function, Variable Number of Arguments, Scope,

Passing Functions to a Function, Mapping Functions in a Dictionary, Lambda, Modules, and

Standard Modules.

Python Functions

Functions are the most important aspect of an application. A function can be defined as the

organized block of reusable code which can be called whenever required.

Python allows us to divide a large program into the basic building blocks known as function. The

function contains the set of programming statements enclosed by {}. A function can be called

multiple times to provide reusability and modularity to the python program.

In other words, we can say that the collection of functions creates a program. The function is also

known as procedure or subroutine in other programming languages.

Python provide us various inbuilt functions like range() or print(). Although, the user can create its

functions which can be called user-defined functions.

Advantage of functions in python

There are the following advantages of C functions.

o By using functions, we can avoid rewriting same logic/code again and again in a program.

o We can call python functions any number of times in a program and from any place in a

program.

o We can track a large python program easily when it is divided into multiple functions.

o Reusability is the main achievement of python functions.

o However, Function calling is always overhead in a python program.

Creating a function

In python, we can use def keyword to define the function. The syntax to define a function in python

is given below.

1. def my_function():

2. function-suite

3. return <expression>

The function block is started with the colon (:) and all the same level block statements remain at the

same indentation.

A function can accept any number of parameters that must be the same in the definition and

function calling.

Function calling

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 33

In python, a function must be defined before the function calling otherwise the python interpreter

gives an error. Once the function is defined, we can call it from another function or the python

prompt. To call the function, use the function name followed by the parentheses.

A simple function that prints the message "Hello Word" is given below.

def hello_world():

 print("hello world")

hello_world()

Output:

hello world

Parameters in function

The information into the functions can be passed as the parameters. The parameters are specified in

the parentheses. We can give any number of parameters, but we have to separate them with a

comma.

#python function to calculate the sum of two variables

#defining the function

def sum (a,b):

return a+b;

#taking values from the user

a = int(input("Enter a: "))

b = int(input("Enter b: "))

#printing the sum of a and b

print("Sum = ",sum(a,b))

Output:

Enter a: 10

Enter b: 20

Sum = 30

Call by reference in Python

In python, all the functions are called by reference, i.e., all the changes made to the reference inside

the function revert back to the original value referred by the reference.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 34

However, there is an exception in the case of mutable objects since the changes made to the mutable

objects like string do not revert to the original string rather, a new string object is made, and

therefore the two different objects are printed.

Example 1 Passing Immutable Object (List)

#defining the function

def change_list(list1):

list1.append(20);

list1.append(30);

print("list inside function = ",list1)

#defining the list

list1 = [10,30,40,50]

#calling the function

change_list(list1);

print("list outside function = ",list1);

Output:

list inside function = [10, 30, 40, 50, 20, 30]

list outside function = [10, 30, 40, 50, 20, 30]

Example 2 Passing Mutable Object (String)

#defining the function

def change_string (str):

str = str + " Hows you";

print("printing the string inside function :",str);

string1 = "Hi I am there"

#calling the function

change_string(string1)

print("printing the string outside function :",string1)

Output:

printing the string inside function : Hi I am there Hows you

printing the string outside function : Hi I am there

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 35

Types of arguments

There may be several types of arguments which can be passed at the time of function calling.

1. Required arguments

2. Keyword arguments

3. Default arguments

4. Variable-length arguments

Required Arguments

Till now, we have learned about function calling in python. However, we can provide the

arguments at the time of function calling. As far as the required arguments are concerned, these are

the arguments which are required to be passed at the time of function calling with the exact match

of their positions in the function call and function definition. If either of the arguments is not

provided in the function call, or the position of the arguments is changed, then the python

interpreter will show the error.

Consider the following example.

#the function simple_interest accepts three arguments and returns the simple interest

accordingly

def simple_interest(p,t,r):

return (p*t*r)/100

p = float(input("Enter the principle amount? "))

r = float(input("Enter the rate of interest? "))

t = float(input("Enter the time in years? "))

print("Simple Interest: ",simple_interest(p,r,t))

Output:

Enter the principle amount? 10000

Enter the rate of interest? 5

Enter the time in years? 2

Simple Interest: 1000.0

Keyword arguments

Python allows us to call the function with the keyword arguments. This kind of function call will

enable us to pass the arguments in the random order.

The name of the arguments is treated as the keywords and matched in the function calling and

definition. If the same match is found, the values of the arguments are copied in the function

definition.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 36

Consider the following example.

#The function simple_interest(p, t, r) is called with the keyword arguments the order of argume

nts doesn't matter in this case

def simple_interest(p,t,r):

return (p*t*r)/100

print("Simple Interest: ",simple_interest(t=10,r=10,p=1900))

Default Arguments

Python allows us to initialize the arguments at the function definition. If the value of any of the

argument is not provided at the time of function call, then that argument can be initialized with the

value given in the definition even if the argument is not specified at the function call.

def printme(name,age=22):

print("My name is",name,"and age is",age)

printme(name = "john") #the variable age is not passed into the function however the default val

ue of age is considered in the function

printme(age = 10,name="David") #the value of age is overwritten here, 10 will be printed as age

Output:

My name is john and age is 22

My name is David and age is 10

Variable length Arguments

In the large projects, sometimes we may not know the number of arguments to be passed in

advance. In such cases, Python provides us the flexibility to provide the comma separated values

which are internally treated as tuples at the function call.

However, at the function definition, we have to define the variable with * (star) as *<variable -

name >.

Consider the following example.

def printme(*names):

print("type of passed argument is ",type(names))

print("printing the passed arguments...")

for name in names:

print(name)

printme("john","David","smith","nick")

Output:

type of passed argument is <class 'tuple'>

printing the passed arguments...

john

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 37

David

smith

nick

Scope of variables

The scopes of the variables depend upon the location where the variable is being declared. The

variable declared in one part of the program may not be accessible to the other parts.

In python, the variables are defined with the two types of scopes.

1. Global variables

2. Local variables

The variable defined outside any function is known to have a global scope whereas the variable

defined inside a function is known to have a local scope.

Consider the following example.

def calculate(*args):

sum=0

for arg in args:

sum = sum +arg

print("The sum is",sum)

sum=0

calculate(10,20,30) #60 will be printed as the sum

print("Value of sum outside the function:",sum) # 0 will be printed

Output:

The sum is 60

Value of sum outside the function: 0

Passing Functions to a Function

Python implements the following method where the first parameter is a function:

map(function, iterable, ...) - Apply function to every item of iterable and return a list of the results.

We can also write custom functions where we can pass a function as an argument.

We rewrite given code to pass the function sqr(x) as function argument using map method.

s = [1, 3, 5, 7, 9]

def sqr(x): return x ** 2

print(map(sqr, s))

We can as well use lambda function to get same output

s = [1, 3, 5, 7, 9]

print(map((lambda x: x**2), s))

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 38

OUTPUT

C:/Users/TutorialsPoint1/~.py

[1, 9, 25, 49, 81]

Lambda

In Python, anonymous function means that a function is without a name. As we already know

that def keyword is used to define the normal functions and the lambda keyword is used to create

anonymous functions. It has the following syntax:

lambda arguments: expression

• This function can have any number of arguments but only one expression, which is evaluated

and returned.

• One is free to use lambda functions wherever function objects are required.

• You need to keep in your knowledge that lambda functions are syntactically restricted to a

single expression.

• It has various uses in particular fields of programming besides other types of expressions in

functions.

Example:

Python code to illustrate cube of a number

showing difference between def() and lambda().

def cube(y):

 return y*y*y;

g = lambda x: x*x*x

print(g(7))

print(cube(5))

output:

343

125

Use of lambda () with filter ()

The filter() function in Python takes in a function and a list as arguments. This offers an elegant

way to filter out all the elements of a sequence “sequence”, for which the function returns True.

Here is a small program that returns the odd numbers from an input list:

Python code to illustrate

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 39

filter() with lambda()

li = [5, 7, 22, 97, 54, 62, 77, 23, 73, 61]

final_list = list(filter(lambda x: (x%2 != 0) , li))

print(final_list)

Output:

[5, 7, 97, 77, 23, 73, 61]

Use of lambda () with map ()

The map() function in Python takes in a function and a list as argument. The function is called with

a lambda function and a list and a new list is returned which contains all the lambda modified items

returned by that function for each item.

Example:

Python code to illustrate

map() with lambda()

to get double of a list.

li = [5, 7, 22, 97, 54, 62, 77, 23, 73, 61]

final_list = list(map(lambda x: x*2 , li))

print(final_list)

Output:

[10, 14, 44, 194, 108, 124, 154, 46, 146, 122]

Use of lambda () with reduce ()

The reduce() function in Python takes in a function and a list as argument. The function is called

with a lambda function and a list and a new reduced result is returned. This performs a repetitive

operation over the pairs of the list. This is a part of functools module.

 Example:

Python code to illustrate

reduce() with lambda()

to get sum of a list

from functools import reduce

li = [5, 8, 10, 20, 50, 100]

sum = reduce((lambda x, y: x + y), li)

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 40

print (sum)

Output:

193

Python Modules

A python module can be defined as a python program file which contains a python code including

python functions, class, or variables. In other words, we can say that our python code file saved

with the extension (.py) is treated as the module. We may have a runnable code inside the python

module.

Modules in Python provides us the flexibility to organize the code in a logical way.

To use the functionality of one module into another, we must have to import the specific module.

Example

In this example, we will create a module named as file.py which contains a function func that

contains a code to print some message on the console.

Let's create the module named as file.py.

• #displayMsg prints a message to the name being passed.

• def displayMsg(name)

• print("Hi "+name);

Here, we need to include this module into our main module to call the method displayMsg() defined

in the module named file.

Loading the module in our python code

We need to load the module in our python code to use its functionality. Python provides two types

of statements as defined below.

1. The import statement

2. The from-import statement

The import statement

The import statement is used to import all the functionality of one module into another. Here, we

must notice that we can use the functionality of any python source file by importing that file as the

module into another python source file.

We can import multiple modules with a single import statement, but a module is loaded once

regardless of the number of times, it has been imported into our file.

The syntax to use the import statement is given below.

• import module1,module2,........ module n

Hence, if we need to call the function displayMsg() defined in the file file.py, we have to import

that file as a module into our module as shown in the example below.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 41

Example:

import file;

name = input("Enter the name?")

file.displayMsg(name)

Output:

Enter the name?John

Hi John

The from-import statement

Instead of importing the whole module into the namespace, python provides the flexibility to import

only the specific attributes of a module. This can be done by using from? import statement. The

syntax to use the from-import statement is given below.

• from < module-name> import <name 1>, <name 2>..,<name n>

Consider the following module named as calculation which contains three functions as summation,

multiplication, and divide.

calculation.py:

#place the code in the calculation.py

def summation(a,b):

return a+b

def multiplication(a,b):

return a*b;

def divide(a,b):

return a/b;

Main.py:

from calculation import summation

#it will import only the summation() from calculation.py

a = int(input("Enter the first number"))

b = int(input("Enter the second number"))

print("Sum = ",summation(a,b)) #we do not need to specify the module name while accessing s

ummation()

Output:

Enter the first number10

Enter the second number20

Sum = 30

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 42

The from...import statement is always better to use if we know the attributes to be imported from

the module in advance. It doesn't let our code to be heavier. We can also import all the attributes

from a module by using *.

Consider the following syntax.

• from <module> import *

Renaming a module

Python provides us the flexibility to import some module with a specific name so that we can use

this name to use that module in our python source file.

The syntax to rename a module is given below.

• import <module-name> as <specific-name>

Example

#the module calculation of previous example is imported in this example as cal.

import calculation as cal;

a = int(input("Enter a?"));

b = int(input("Enter b?"));

print("Sum = ",cal.summation(a,b))

Output:

Enter a?10

Enter b?20

Sum = 30

Using dir() function

The dir() function returns a sorted list of names defined in the passed module. This list contains all

the sub-modules, variables and functions defined in this module.

Consider the following example.

Example

import json

List = dir(json)

print(List)

Output:

['JSONDecoder', 'JSONEncoder', '__all__', '__author__', '__builtins__', '__cached__', '__doc__',

'__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__version__',

'_default_decoder', '_default_encoder', 'decoder', 'dump', 'dumps', 'encoder', 'load', 'loads', 'scanner']

The reload() function

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 43

As we have already stated that, a module is loaded once regardless of the number of times it is

imported into the python source file. However, if you want to reload the already imported module

to re-execute the top-level code, python provides us the reload() function. The syntax to use the

reload() function is given below.

• reload(<module-name>)

for example, to reload the module calculation defined in the previous example, we must use the

following line of code.

• reload(calculation)

Scope of variables

In Python, variables are associated with two types of scopes. All the variables defined in a module

contain the global scope unless or until it is defined within a function.

All the variables defined inside a function contain a local scope that is limited to this function itself.

We can not access a local variable globally.

If two variables are defined with the same name with the two different scopes, i.e., local and global,

then the priority will always be given to the local variable.

Consider the following example.

Example

name = "john"

def print_name(name):

print("Hi",name) #prints the name that is local to this function only.

name = input("Enter the name?")

print_name(name)

Output:

Hi David

Python packages

The packages in python facilitate the developer with the application development environment by

providing a hierarchical directory structure where a package contains sub-packages, modules, and

sub-modules. The packages are used to categorize the application level code efficiently.

Let's create a package named Employees in your home directory. Consider the following steps.

1. Create a directory with name Employees on path /home.

2. Create a python source file with name ITEmployees.py on the path /home/Employees.

ITEmployees.py

def getITNames():

 List = ["John", "David", "Nick", "Martin"]

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 44

 return List;

3. Similarly, create one more python file with name BPOEmployees.py and create a function

getBPONames().

4. Now, the directory Employees which we have created in the first step contains two python

modules. To make this directory a package, we need to include one more file here, that is

__init__.py which contains the import statements of the modules defined in this directory.

__init__.py

from ITEmployees import getITNames

from BPOEmployees import getBPONames

5. Now, the directory Employees has become the package containing two python modules. Here we

must notice that we must have to create __init__.py inside a directory to convert this directory to a

package.

6. To use the modules defined inside the package Employees, we must have to import this in our

python source file. Let's create a simple python source file at our home directory (/home) which

uses the modules defined in this package.

Test.py

• import Employees

• print(Employees.getNames())

Output:

['John', 'David', 'Nick', 'Martin']

We can have sub-packages inside the packages. We can nest the packages up to any level

depending upon the application requirements.

The following image shows the directory structure of an application Library management system

which contains three sub-packages as Admin, Librarian, and Student. The sub-packages contain the

python modules.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 45

PROGRAM 5

AIM:OOP concepts: Classes, File Organization, Special Methods, Inheritance,

Polymorphism, Special Characters, Character Classes, Quantifiers, Dot Character, Greedy

Matches, Matching at Beginning or End, Match Objects, Compiling Regular Expressions.

Like other general purpose languages, python is also an object-oriented language since its

beginning. Python is an object-oriented programming language. It allows us to develop applications

using an Object Oriented approach. In Python, we can easily create and use classes and objects.

Major principles of object-oriented programming system are given below.

o Object

o Class

o Method

o Inheritance

o Polymorphism

o Data Abstraction

o Encapsulation

Python Class and Objects

Creating classes in python

In python, a class can be created by using the keyword class followed by the class name. The syntax

to create a class is given below.

Syntax

class ClassName:

#statement_suite

In python, we must notice that each class is associated with a documentation string which can be

accessed by using <class-name>.__doc__. A class contains a statement suite including fields,

constructor, function, etc. definition.

Consider the following example to create a class Employee which contains two fields as Employee

id, and name.

The class also contains a function display() which is used to display the information of the

Employee.

Example

class Employee:

 id = 10;

 name = "ayush"

 def display (self):

 print(self.id,self.name)

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 46

Here, the self is used as a reference variable which refers to the current class object. It is always the

first argument in the function definition. However, using self is optional in the function call.

Creating an instance of the class

A class needs to be instantiated if we want to use the class attributes in another class or method. A

class can be instantiated by calling the class using the class name.

The syntax to create the instance of the class is given below.

<object-name> = <class-name>(<arguments>)

The following example creates the instance of the class Employee defined in the above example.

Example

class Employee:

 id = 10;

 name = "John"

 def display (self):

 print("ID: %d \nName: %s"%(self.id,self.name))

emp = Employee()

emp.display()

Output:

ID: 10

Name: ayush

Python Inheritance

Inheritance is an important aspect of the object-oriented paradigm. Inheritance provides code

reusability to the program because we can use an existing class to create a new class instead of

creating it from scratch.

In inheritance, the child class acquires the properties and can access all the data members and

functions defined in the parent class. A child class can also provide its specific implementation to

the functions of the parent class. In this section of the tutorial, we will discuss inheritance in detail.

In python, a derived class can inherit base class by just mentioning the base in the bracket after the

derived class name. Consider the following syntax to inherit a base class into the derived class.

Example 1

class Animal:

 def speak(self):

 print("Animal Speaking")

#child class Dog inherits the base class Animal

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 47

class Dog(Animal):

 def bark(self):

 print("dog barking")

d = Dog()

d.bark()

d.speak()

Output:

dog barking

Animal Speaking

Polymorphism

Sometimes an object comes in many types or forms. If we have a button, there are many different

draw outputs (round button, check button, square button, button with image) but they do share the

same logic: onClick(). We access them using the same method . This idea is called Polymorphism.

Polymorphism is based on the greek words Poly (many) and morphism (forms). We will create a

structure that can take or use many forms of objects.

Polymorphism with a function:

We create two classes: Bear and Dog, both can make a distinct sound. We then make two

instances and call their action using the same method.

class Bear(object):

 def sound(self):

 print("Groarrr")

class Dog(object):

 def sound(self):

 print("Woof woof!")

 def makeSound(animalType):

 animalType.sound()

bearObj = Bear()

dogObj = Dog()

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 48

makeSound(bearObj)

makeSound(dogObj)

Output:

Groarrr

Woof woof!

Regular Expression

A regular expression is a compact notation for representing a collection of strings. What makes

regular expressions so powerful is that a single regular expression can represent an unlimited

number of strings—provided that they meet the regular expression's requirements. Regular

expressions (we'll refer to them mostly as "regexes" from now on) are defined using a mini-

language that's completely different from Python—but Python includes the re module, through

which we can seamlessly create and use regexes.

Regexes are used for four main purposes:

• Validation. Checking whether a piece of text meets some criteria; for example, a currency

symbol followed by digits.

• Searching. Locating substrings that can have more than one form; for example, finding any

of pet.png, pet.jpg, pet.jpeg, or pet.svg while avoiding carpet.png and similar.

• Searching and replacing. Replacing everywhere the regex matches with a string; for example,

finding bicycle or human powered vehicle and replacing either with bike.

• Splitting strings. Splitting a string at each place the regex matches; for example, splitting

everywhere a colon (:) or equal sign (=) is encountered.

Python's Regular Expression Language

This section looks at the regular expression language in four subsections. The first subsection shows

how to match individual characters or groups of characters; for example, match a, or match b, or

match either a or b. The second subsection shows how to quantify matches; for example, match

once, or match at least once, or match as many times as possible. The third subsection shows how to

group subexpressions and how to capture matching text, and the final subsection shows how to use

the language's assertions and flags to affect how regular expressions work.

Characters and Character Classes

The simplest expressions are just literal characters, such as a or 5, and if no quantifier is explicitly

given the expression is taken to be "match one occurrence." For example, the regex tune consists of

four expressions, each implicitly quantified to match once, so it matches one t followed by

one u followed by one n followed by one e, and hence matches the strings tune and attuned.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 49

Although most characters can be used as literals, some are special characters—symbols in the regex

language that must be escaped by preceding them with a backslash (\) to use them as literals.

The special characters are \.^$?+*{}[]()|. Most of Python's standard string escapes can also be used

within regexes; for example, \n for newline and \t for tab, as well as hexadecimal escapes for

characters using the \xHH, \uHHHH, and \UHHHHHHHH syntaxes.

In many cases, rather than matching one particular character we want to match any one of a set of

characters. This can be achieved by using a character class—one or more characters enclosed in

square brackets. (This has nothing to do with a Python class, and is simply the regex term for "set of

characters.") A character class is an expression. Like any other expression, if not explicitly

quantified it matches exactly one character (which can be any of the characters in the character

class). For example, the regex r[ea]d matches both red and radar, but not read. Similarly, to match

a single digit we can use the regex [0123456789]. For convenience we can specify a range of

characters using a hyphen, so the regex [0-9] also matches a digit. It's possible to negate the

meaning of a character class by following the opening bracket with a caret, so [^0-9] matches any

character that is not a digit.

Note that inside a character class, apart from the backslash (\), the special characters lose their

special meaning, although the caret (^) acquires a new meaning (negation) if it's the first character

in the character class, and otherwise is simply a literal caret. Also, the hyphen (-) signifies a

character range unless it's the first character, in which case it's a literal hyphen. Since some sets of

characters are required so frequently, several have shorthand forms, which are shown in Table 1.

With one exception, the shorthands can be used inside character sets; for example, the regex [\dA-

Fa-f] matches any hexadecimal digit. The exception is the period (.) which is a shorthand outside a

character class but matches a literal period inside a character class.

Table 1 Character Class Shorthands

Symbol Meaning

. Matches any character except newline, any character at all with the re.DOTALL flag, or

inside a character class matches a literal period.

\d Matches a Unicode digit, or [0-9] with the re.ASCII flag.

\D Matches a Unicode nondigit, or [^0-9] with the re.ASCII flag.

\s Matches a Unicode whitespace, or [\t\n\r\f\v] with the re.ASCII flag.

\S Matches a Unicode non-whitespace, or [^ \t\n\r\f\v] with the re.ASCII flag.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 50

\w Matches a Unicode "word" character, or [a-zA-Z0-9_] with the re.ASCII flag.

\W Matches a Unicode non-"word" character, or [^a-zA-Z0-9_] with the re.ASCII flag.

Quantifiers

A quantifier has the form {m,n} where m and n are the minimum and maximum times the

expression to which the quantifier applies must match. For example,

both e{1,1}e{1,1} and e{2,2} match feel, but neither matches felt.

Writing a quantifier after every expression would soon become tedious, and is certainly difficult to

read. Fortunately, the regex language supports several convenient shorthands. If only one number is

given in the quantifier, it's taken to be both the minimum and the maximum, so e{2} is the same

as e{2,2}. As noted in the preceding section, if no quantifier is explicitly given, it's assumed to

be 1 (that is, {1,1} or {1}); therefore, ee is the same as e{1,1}e{1,1} and e{1}e{1}, so

both e{2} and ee match feel but not felt.

Having a different minimum and maximum is often convenient. For example, to

match travelled and traveled (both legitimate spellings),we could use

either travel{1,2}ed or travell{0,1}ed. The {0,1} quantification is used so often that it has its own

shorthand form, ?, so another way of writing the regex (and the one most likely to be used in

practice) is travell?ed.

Two other quantification shorthands are provided: A plus sign (+) stands for {1,n} ("at least one")

and an asterisk (*) stands for {0,n} ("any number of"). In both cases, n is the maximum possible

number allowed for a quantifier, usually at least 32767. Table 2 shows all the quantifiers.

The + quantifier is very useful. For example, to match integers, we could use \d+ to match one or

more digits. This regex could match in two places in the string 4588.91, for

example: 4588.91 and 4588.91. Sometimes typos are the result of pressing a key too long. We could

use the regex bevel+ed to match the legitimate beveled and bevelled, and the incorrect bevellled. If

we wanted to standardize on the single-l spelling, and match only occurrences that had two or

more l's, we could use bevell+ed to find them.

The * quantifier is less useful, simply because it can lead so often to unexpected results. For

example, supposing that we want to find lines that contain comments in Python files, we might try

searching for #*. But this regex will match any line whatsoever, including blank lines, because the

meaning is "match any number of pound signs"—and that includes none. As a rule for those new to

regexes, avoid using * at all, and if you do use it (or if you use ?), make sure that at least one other

expression in the regex has a nonzero quantifier. Use at least one quantifier other than * or ?, that is,

since both of these can match their expression zero times.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 51

Often it's possible to convert * uses to + uses and vice versa. For example, we could match

"tasselled" with at least one l using tassell*ed or tassel+ed, and match those with two or more l's

using tasselll*ed or tassell+ed.

If we use the regex \d+ it will match 136. But why does it match all the digits, rather than just the

first one? By default, all quantifiers are greedy—they match as many characters as they can. We can

make any quantifier nongreedy (also called minimal) by following it with a question mark (?)

symbol. (The question mark has two different meanings—on its own it's a shorthand for

the {0,1} quantifier, and when it follows a quantifier it tells the quantifier to be nongreedy.) For

example, \d+? can match the string 136 in three different places: 136, 136, and 136. Here's another

example: \d?? matches zero or one digits, but prefers to match none since it's nongreedy; on its own

it suffers the same problem as * in that it will match nothing—that is, any text at all.

Table 2 Regular Expression Quantifiers

Syntax Meaning

e? or e{0,1} Greedily match zero occurrences or one occurrence of expression e.

e?? or e{0,1}? Nongreedily match zero occurrences or one occurrence of expression e.

e+ or e{1,} Greedily match one or more occurrences of expression e.

e+? or e{1,}? Nongreedily match one or more occurrences of expression e.

e* or e{0,} Greedily match zero or more occurrences of expression e.

e*? or e{0,}? Nongreedily match zero or more occurrences of expression e.

e{m} Match exactly m occurrences of expression e.

e{m,} Greedily match at least m occurrences of expression e.

e{m,}? Nongreedily match at least m occurrences of expression e.

e{,n} Greedily match at most n occurrences of expression e.

e{,n}? Nongreedily match at most n occurrences of expression e.

e{m,n} Greedily match at least m and at most n occurrences of expression e.

e{m,n}? Nongreedily match at least m and at most n occurrences of expression e.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 52

Nongreedy quantifiers can be useful for quick-and-dirty XML and HTML parsing. For example, to

match all the image tags, writing <img.*> (match one each in order of <, i, m, and g, and then zero

or more of any character apart from newline, and then one >) will not work because the .* part is

greedy and will match everything including the tag's closing >, and will keep going until it reaches

the last > in the entire text.

Three solutions present themselves (apart from using a proper parser):

• <img[^>]*> matches <img, any number of non-> characters, and then the tag's closing >

character.

• <img.*?> matches <img, any number of characters (but nongreedily, so it will stop

immediately before the tag's closing >), and then the >.

• <img[^>]*?> combines both of the preceding options.

None of these is correct, though, since they can all match , which is not valid. Since we know

that an image tag must have a src attribute, a more accurate regex is as follows:

<img\s+[^>]*?src=\w+[^>]*?>

This regex matches the literal characters <img, one or more whitespace characters, nongreedily zero

or more of anything except > (to skip any other attributes such as alt), the src attribute (the literal

characters src= and then at least one "word" character), and then any other non-> characters

(including none) to account for any other attributes, and finally the closing >.

Grouping and Capturing

In practical applications, we often need regexes that can match any one of two or more alternatives,

and we often need to capture the match or some part of the match for further processing. Also, we

sometimes want a quantifier to apply to several expressions. All of these goals can be achieved by

grouping with parentheses; and, in the case of alternatives, using alternation with the vertical bar (|).

Alternation is especially useful when we want to match any one of several quite different

alternatives. For example, the regex aircraft|airplane|jet will match any text that

contains aircraft or airplane or jet. The same objective can be achieved using the

regex air(craft|plane)|jet. Here, the parentheses are used to group expressions, so we have two

outer expressions, air(craft|plane) and jet. The first of these has an inner expression, craft|plane,

and because this is preceded by air, the first outer expression can match only aircraft or airplane.

Parentheses serve two different purposes: grouping expressions and capturing the text that matches

an expression. We'll use the term group to refer to a grouped expression whether it captures or not,

and capture and capture group to refer to a captured group. If we used the

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 53

regex (aircraft|airplane|jet), it not only would match any of the three expressions, but would

capture whichever one was matched for later reference. Compare this with the

regex (air(craft|plane)|jet), which has two captures if the first expression matches

(aircraft or airplane as the first capture and craft or plane as the second capture), and one capture if

the second expression matches (jet). We can switch off the capturing effect by following an opening

parenthesis with ?: like this:

(air(?:craft|plane)|jet)

This will have only one capture if it matches (aircraft or airplane or jet).

A grouped expression is an expression, and therefore can be quantified. As with any other

expression, the quantity is assumed to be 1 unless explicitly given. For example, if we've read a text

file with lines of the form key=value, where each key is alphanumeric, the regex (\w+)=(.+) will

match every line that has a nonempty key and a nonempty value. (Recall that . matches anything

except newlines.) And for every line that matches, two captures are made, the first being the key

and the second being the value.

For example, the key=value regular expression will match the entire line topic= physical

geography with the two captures shown shaded. Notice that the second capture includes some

whitespace, and that whitespace before the equal sign is not accepted. We could refine the regex to

be more flexible in accepting whitespace, and to strip off unwanted whitespace, by using a

somewhat longer version:

[\t]*(\w+)[\t]*=[\t]*(.+)

This example matches the same line as before, as well as lines that have whitespace around the

equal sign, but with the first capture having no leading or trailing whitespace, and the second

capture having no leading whitespace (for example, topic = physical geography).

We've been careful to keep the whitespace-matching parts outside the capturing parentheses, and to

allow for lines that have no whitespace at all. We didn't use \s to match whitespace because that

matches newlines (\n), which could lead to incorrect matches that span lines (for instance, if the

re.MULTILINE flag is used). And for the value we didn't use \S to match non-whitespace because

we want to allow for values that contain whitespace (English sentences, for example). To avoid the

second capture having trailing whitespace, we would need a more sophisticated regex; we'll see this

in the next subsection.

We can refer to captures by using backreferences; that is, by referring back to an earlier capture

group. Note that backreferences cannot be used inside character classes; that is, inside brackets ([]).

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 54

One syntax for backreferences inside regexes themselves is \i, where i is the capture number.

Captures are numbered starting from one and increasing by one going from left to right as each new

(capturing) left parenthesis is encountered. For example, to match duplicated words simplistically,

we can use the regex (\w+)\s+\1 to match a "word," followed by at least one whitespace, and then

the same word as was captured. (Capture number 0 is created automatically without the need for

parentheses; it holds the entire match—that is, what we show underlined.) We'll see a more

sophisticated way to match duplicate words later.

In long or complicated regexes, it's often more convenient to use names rather than numbers for

captures. This approach can also make maintenance easier, because adding or removing capturing

parentheses may change the numbers but won't affect names. To name a capture, follow the opening

parenthesis with ?P<name>.For example,

(?P<key>\w+)=(?P<value>.+)

has two captures called key and value. The syntax for backreferences to named captures inside a

regex is (?P=name). For example,

(?P<word>\w+)\s+(?P=word)

Matches duplicate words using a capture called word.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 55

MATLAB

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 56

PROGRAM 6,7,8

6. AIM : MATLAB Menus, Toolbars, Computing with MATLAB, Script Files and the

Editor/Debugger, MATLAB help System.

7. AIM: MATLAB controls: Relational Logical Variables. Conditional Statements: if – else –

else if, switch Loops: for – while – break, continue. User-Defined Functions.

8. AIM : Arrays, Matrices and Matrix Operations Debugging MATLAB Programs. Working

with Data Files, and Graphing Functions: XY Plots – Sub-plots.

(THEORY REALTED TO PROGRAM 6, 7 and 8)

MATLAB (matrix laboratory) is a fourth-generation high-level programming language and

interactive environment for numerical computation, visualization and programming. MATLAB is

developed by MathWorks.

MATLAB's Power of Computational Mathematics

MATLAB is used in every facet of computational mathematics. Following are some commonly

used mathematical calculations where it is used most commonly −

• Dealing with Matrices and Arrays

• 2-D and 3-D Plotting and graphics

• Linear Algebra

• Algebraic Equations

• Non-linear Functions

• Statistics

• Data Analysis

• Calculus and Differential Equations

• Numerical Calculations

• Integration

• Transforms

• Curve Fitting

• Various other special functions

Features of MATLAB

Following are the basic features of MATLAB −

• It is a high-level language for numerical computation, visualization and application

development.

• It also provides an interactive environment for iterative exploration, design and problem

solving.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 57

• It provides vast library of mathematical functions for linear algebra, statistics, Fourier

analysis, filtering, optimization, numerical integration and solving ordinary differential

equations.

• It provides built-in graphics for visualizing data and tools for creating custom plots.

• MATLAB's programming interface gives development tools for improving code quality

maintainability and maximizing performance.

• It provides tools for building applications with custom graphical interfaces.

• It provides functions for integrating MATLAB based algorithms with external applications

and languages such as C, Java, .NET and Microsoft Excel.

Uses of MATLAB

MATLAB is widely used as a computational tool in science and engineering encompassing the

fields of physics, chemistry, math and all engineering streams. It is used in a range of applications

including −

• Signal Processing and Communications

• Image and Video Processing

• Control Systems

• Test and Measurement

• Computational Finance

• Computational Biology

6. MATLAB Menus, Toolbars, Computing with MATLAB, Script Files and the

Editor/Debugger, MATLAB help System.

MATLAB Menus

Create multiple-choice dialog box

Syntax

choice = menu(message,opt1,opt2,...,optn)

choice = menu(message, options)

Description

choice = menu(message,opt1,opt2,...,optn) displays a modal menu dialog box containing the text

in message and the choices specified by opt1, opt2,... optn. The menu function returns the number

of the selected menu item, or 0 if the user clicks the close button on the window.

Specify message as a character vector or string scalar. Specify opt1, opt2,... optn as character

vectors or string scalars.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 58

choice = menu(message,options) specifies the choices as a cell array of character vectors or string

array.

If the user's terminal provides a graphics capability, menu displays the menu items as push buttons

in a figure window (Example 1). Otherwise. they will be given as a numbered list in the Command

Window (Example 2).

Examples

Example 1

On a system with a display, menu displays choices as buttons in a dialog box:

choice = menu('Choose a color','Red','Blue','Green')

displays the following dialog box.

The number entered by the user in response to the prompt is returned as choice (i.e., choice =

2 implies that the user selected Blue).

After input is accepted, the dialog box closes, returning the output in choice. You can use choice to

control the color of a graph:

t = 0:.1:60;

s = sin(t);

color = ['r','b','g']

plot(t,s,color(choice))

Example 2

On a system without a display, menu displays choices in the Command Window:

choice = menu('Choose a color','Red','Blue','Green')

displays the following text.

----- Choose a color -----

1) Red

2) Blue

3) Green

Select a menu number:

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 59

TOOL BAR

Create menu or menu items

collapse all in page

Syntax

m = uimenu

m = uimenu(Name,Value)

m = uimenu(parent)

m = uimenu(parent,Name,Value)

Description

m = uimenu creates a menu in the current figure and returns the Menu object. If there is no figure

available, MATLAB® calls the figure function to create one.

Example

m = uimenu(Name,Value) specifies menu property values using one or more name-value pair

arguments.

m = uimenu(parent) creates the menu in the specified parent container. The parent container can be

a figure created with either the figure or uifigure function, or another Menu object. Property values

for uimenu vary slightly depending on whether the app is created with

the figure or uifigure function. For more information, see Name-Value Pair Arguments.

Example

m = uimenu(parent,Name,Value) specifies the parent container and one or more property values.

Examples

collapse all

Menu in Default Menu Bar

Create a figure that displays the default menu bar. Add a menu and a menu item.

f = figure('Toolbar','none');

m = uimenu('Text','Options');

mitem = uimenu(m,'Text','Reset');

javascript:void(0);
https://www.mathworks.com/help/matlab/ref/uimenu.html#d117e1519403
https://www.mathworks.com/help/matlab/ref/uimenu.html#d117e1519419
https://www.mathworks.com/help/matlab/ref/uimenu.html#d117e1519434
https://www.mathworks.com/help/matlab/ref/uimenu.html#d117e1519465
https://www.mathworks.com/help/matlab/ref/figure.html
https://www.mathworks.com/help/matlab/ref/uimenu.html#mw_3bb09169-9d3a-4c69-922d-6edb3f49123d
https://www.mathworks.com/help/matlab/ref/uimenu.html#namevaluepairarguments
https://www.mathworks.com/help/matlab/ref/uimenu.html#mw_837f5674-851b-47e2-a396-aa6b9db135b4
https://www.mathworks.com/help/matlab/ref/figure.html
https://www.mathworks.com/help/matlab/ref/uifigure.html
https://www.mathworks.com/help/matlab/ref/uimenu.html#mw_f799404a-915e-4807-ada2-ae47c39c14f7
https://www.mathworks.com/help/matlab/ref/uimenu.html#mw_3bb09169-9d3a-4c69-922d-6edb3f49123d
https://www.mathworks.com/help/matlab/ref/uimenu.html#mw_837f5674-851b-47e2-a396-aa6b9db135b4
https://www.mathworks.com/help/matlab/ref/uimenu.html#namevaluepairarguments
javascript:void(0);

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 60

Menu Item with Keyboard Shortcuts and Callback

Add a menu item with keyboard shortcuts to the menu bar and define a callback that executes when

the menu item is selected.

First, create a program file called importmenu.m. Within the program file:

• Create a figure.

• Add a menu called Import. Create a mnemonic keyboard shortcut for the menu by

specifying '&Import' as the text label.

• Create a menu item and specify mnemonic and accelerator keyboard shortcuts.

• Define a MenuSelectedFcn callback that executes when the user clicks the menu item or uses the

mnemonic or accelerator keyboard shortcuts.

Run the program file.

function importmenu

f = uifigure;

m = uimenu(f,'Text','&Import');

 mitem = uimenu(m,'Text','&Text File');

mitem.Accelerator = 'T';

mitem.MenuSelectedFcn = @MenuSelected;

 function MenuSelected(src,event)

 file = uigetfile('*.txt');

 end

 end

You can interact with the menu and menu item, using the keyboard, in the following ways:

• Select the Import menu by pressing Alt+I.

• Select the Text File menu item and execute the callback by pressing Alt+I+T.

• Select the Text File menu item and execute the callback by using the accelerator Ctrl+T.

When you select the Text File menu item, the Select File to Open dialog box opens with the

extension field filtered to text files.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 61

Menu with Checked Menu Item and Shared Callback

Create a checked menu item that can be selected or cleared to show a grid in axes. Share the

callback with a push button so that pushing it also shows or hides the grid.

First, create a program file called plotOptions.m. Within the program file:

• Create a figure with a push button, and axes that display a grid.

• Add a menu and a menu item with mnemonics. Specify that the menu item is checked.

• Define a MenuSelectedFcn callback that hides or shows the grid when the user interacts with the

menu item.

• Define a ButtonPushedFcn that uses the same callback function as the menu item.

Run the program file.

function plotOptions

f = uifigure;

ax = uiaxes(f);

grid(ax);

btn = uibutton(f,'Text','Show Grid');

btn.Position = [155 325 100 20];

m = uimenu(f,'Text','&Plot Options');

mitem = uimenu(m,'Text','Show &Grid','Checked','on');

mitem.MenuSelectedFcn = @ShowGrid;

btn.ButtonPushedFcn = @ShowGrid;

 function ShowGrid(src,event)

 grid(ax);

 if strcmp(mitem.Checked,'on')

 mitem.Checked = 'off';

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 62

 else

 mitem.Checked = 'on';

 end

 end

end

Input Arguments

parent — Parent container

Figure object | Menu object

Parent container, specified as a Figure object created with either the figure or uifigure function, or

another Menu object. If you do not specify a parent container, then MATLAB calls figure to create

one, and places the menu in the menu bar of that figure. Specify the parent as an

existing Menu object to add menu items to a menu, or to nest menu items.

To add menu items to a context menu in GUIDE, or context menus in a figure created with

the figure function, specify the parent as a ContextMenu object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name

and Value is the corresponding value. Name must appear inside quotes. You can specify several

name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: m = uimenu('Text','Open') creates a menu and sets its label to 'Open'.

• For a list of properties available for App Designer, or for creating apps with the uifigure function,

see Menu Properties for App Designer.

• For a list of properties available for GUIDE, or for creating apps with the figure function, see Men

https://www.mathworks.com/help/matlab/ref/figure.html
https://www.mathworks.com/help/matlab/ref/uifigure.html
https://www.mathworks.com/help/matlab/ref/figure.html
https://www.mathworks.com/help/matlab/ref/matlab.ui.container.menuappd-properties.html
https://www.mathworks.com/help/matlab/ref/matlab.ui.container.menu-properties.html

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 63

Script Files and the Editor/Debugger, MATLAB help System.

You can perform operations in MATLAB in two ways:

In the interactive mode, in which all commands are entered directly in the Command window, or

By running a MATLAB program stored in script file. This type of file contains MATLAB

commands, so running it is equivalent to typing all the commands-one at a time-at the Command

window prompt. You can run the file by typing its name at the Command window prompt.

Using the interactive mode is similar to using a calculator, but is convenient only for

simpler problems. When the problem requires many commands, a repeated set of commands, or has

arrays with many elements, the interactive mode is inconvenient. Fortunately, MATLAB allows

you to write your own programs to avoid this difficulty. You write and save MATLAB programs in

M-files, which have the extension. m; for example, program1. m

MATLAB uses two types of M-files: script files and function files. You can use the Editor

Debugger built into MATLAB to create M-files. A script file contains a sequence of MATLAB

commands, and is useful when to use many commands or arrays with many elements. Because they

con tam commands, script files are sometimes called command files. You execute a script-file at

the Command window prompt by typing its name without the extension.m.

Another type of M-file is a function file, which is useful when you need to repeat the operation of a

set of commands. You can create your own function files.

Script files may contain any valid MATLAB commands or functions, including user-written

functions. When you type the name of a script file at the Command window prompt, you get the

same result as if you had typed at the Command window prompt all. the commands stored in the

script file, one at a time. When you type the name of the script file, we say that you are “running the

file” or “executing the file.” The values of variables produced by running a script file are available

in the workspace; thus, we say the variables created by a script file are global variables.

Creating and Using a Script File

The symbol %designates a comment, which is not executed by MATLAB. Comments are not that

useful for interactive sessions, and are used mainly in script files for the purpose of documenting

the file. The comment symbol may be put anywhere in the line. MATLAB ignores everything to the

right of the %symbol. For example, consider the following session.

https://www.matlabhelp.com/problems-5/
https://www.matlabhelp.com/wp-content/uploads/2015/07/Capture13.jpg

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 64

Note that the portion of the line before the %sign is executed to compute x.

Here is a simple example that illustrates how to create, ‘save, and run a script file, using the

Editor/Debugger built into MATLAB. However, you may use another text editor to create the file.

The sample file is shown below. It computes the sine of the square root of several numbers and

displays the results on the screen.

% Program example1.m

% This program computes the sine of

% the square root and displays the result.

x = sqrt ([5:2 :13]);

Y = sin(x)

To create this new M-file (in the MS Windows environment), in the Command window select New

from the File menu, then select M-file. You will then see a new edit window. This is the

Editor/Debugger window as shown in Figure 1.4-1. Type in the file as shown above. You can use

the keyboard and the Edit menu in the Editor/Debugger as you would in most word processors to

create and edit the file. When finished, select Save from the File menu in the Editor/Debugger. In

the dialog box that appears, replace the default name provided (usually named Untitled) with the

name example1 , and click on Save. The Editor/Debugger will automatically provide the extension .

m and save the file in the MATLAB current directory, which for now we will assume to be on the

hard drive.

Figure :The MATLAB Command window with the Editor/Debugger open.

Once the file has been saved, in the MATLAB Command window type the script file’s name

example1 to execute the program. You should see the result displayed in the Command window.

The session looks like the following.

»example1

Y =

0.7867 0.4758 0.1411 0.1741 -0.4475

https://www.matlabhelp.com/wp-content/uploads/2015/07/Capture14.jpg

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 65

Figure 1.4-1 shows a MATLAB MS Windows screen containing the resulting Command window

display and the Editor/Debugger opened to display the script file.

Effective Use of Script Files

Create script fiIes to avoid the need to retype commonly used procedures. The above file, example1

implements a very simple procedure, for which we ordinarily would not create a script file.

However, it illustrates how a script file is useful. For example, to change the numbers evaluated

from [3: 2 : 11] to [2 : 5 : 27] , simply edit tile corresponding line and save the file again (a

common oversight is to forget to resave the file after making changes to it).

Here are some other things to keep in mind when using script files:

1. The name of a script file must follow the MATLAB convention for naming variables; that is, the

name must begin with a letter. and may include dig and the underscore character. up to 31

characters.

2. Recall that typing a variable’s name at the Command window prompt causes MATLAB to display

the value of that variable. Thus, do not give a script file the same name as a variable it computes

because MATLAB will not be able to execute that script file more than once. unless you clear the

variable.

3. Do not give a script file the same name as a MATLAB command or function. You can check to see

if a command. function or file name already exists by using the exi s t command. For example, to

see if a variable example1 already exists, type exist (‘example1’); this will return a 0 if the variable

does not exist, and a I if it does. To see if an M-file example1 m already exists, type exist (‘

example1 .m file before creating the file; this will return a 0 if the file does not exist, and a if it

does. Finally, to see if a built-in function example1 already exists, type exist (‘example1′ builtin’)

before creating the file will return a 0 if the built-in function does not exist, and a 5 if it does.

4. As in interactive mode, all variables created by a script file are global variables, which means that

their values are available in the basic workspace. You can type who to see what variables are

present.

5. Variables created by a function file are local to that function, which mean that their values are not

available outside the function. All the variables in a script file are global. Thus, if you do not need

to have access to an the variables in a script file, consider using a function file instead. This

will avoid “cluttering” the workspace with variable names, and will reduce memory requirements.

Creation of user-defined function files is discussed.

6. You can use the type command to view an M-file without opening it with a text editor. For

example, to view the file examplel, the command is type examplel.

Note that not all functions supplied with MATLAB are “built-in” function. For example, the

function mean.m is supplied but is not a built-in function. The command exist (‘ mean. m’, ‘file’)

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 66

will return a 2, but the command exist (‘mean’, ‘builtin’) will return a O.You may think of

builtin functions as primitives that form the basis for other MATLAB functions. You cannot view

the entire file of a built-in function in a text editor. only the comments.

Effective Use of the Command and Editor/Debugger Window

Here are some tips on using the Command and Editor/Debugger window effectively.

1. You can use the mouse to resize and move windows so they can be viewed simultaneously. Or you

can dock the Editor/Debugger window inside the Desktop by selecting Dock from the view menu of

the Editor/Debugger. To activate a window, click on it.

2. If the Editor/Debugger is not docked, use the Alt- Tab key combination to switch back and forth

quickly between the Editor/Debugger window and the Command window. In the Command

window. use the up-arrow key to retrieve the previously typed script-file name, and press Enter to

execute the script file. This technique allows you to check and correct your program quickly. After

making changes in the script file, be sure to save it before switching to the Command window.

3. You can use the Editor/Debugger as a basic word processor to write a short report that includes

your script file, results, and discussion, perhaps present your solution to one of the problems. First

use the mouse to highlight the results shown in the Command window, then copy and paste them to

the Editor/Debugger window above or below your script file (use Copy and Paste on the Edit

menu). Then, to save space, delete any extra blank lines, and perhaps the prompt symbol. Type your

name arid any other required information, add any discussion you wish, and print the report from

the Editor/Debugger window, or save it and import it into the word processor of your choice

(change the file name or its extension if you intend

to use the script file again).

Debugging Script Files

Debugging a program is the process of finding and removing the “bugs,” or errors, in a program.

Such errors usually fall into one of the following categories.

1. Syntax errors such as omitting a parenthesis or comma, or spelling a command name incorrectly.

MATLAB usually detects the more obvious errors and displays a message describing the error and

its location.

2. Errors due to an incorrect mathematical procedure, called runtime errors. They do not necessarily

occur every time the program is executed; their occurrence often depends on the particular input

data. A common example is division by zero.

MATLAB error messages usually allow you to find syntax errors. However, runtime errors are

more difficult to locate. To locate such an error, try the following:

1. Always test your program with a simple version of the problem, whose answers can be checked by

hand calculations.

https://www.matlabhelp.com/problems-2/

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 67

2. Display any intermediate calculations by removing semicolons at the end of statements.

3. Use the debugging features of the Editor/Debugger, which are covered. However, one advantage of

MATLAB is that it requires relatively simple programs to accomplish many types of tasks. Thus

you probably will not need to use the Debugger for many of the problems encountered in this text.

Programming Style

Comments may be put anywhere in the script file. However, it is important to note that the first

comment line before any executable statement is the line searched by the Lookf o r command, .

Therefore, if you intend to use the script file in the future, consider putting key words that describe

the script file in this first line (called the HI line).

A suggested structure for a script file is the following.

1. Comments section In this section put comment statements to give:

a. The name of the program and any key words in the first line.

b. The date created, and the creators’ names in the second line.

c. The definitions of the variable names for every input and output variable. Divide this section into

at least two subsections, one for input data, and one for output data. A third, optional section may

include definitions of variables used in the calculations. Be sure to include the units of measurement

for all input and all output variables!

d. The name of every user-defined function called by the program.

2. Input section In this section put the input data and/or the input functions ·that enable data to be

entered. Include comments where appropriate for documentation.

3. Calculation section Put the calculations in this section. Include comments where appropriate for

documentation.

4. Output section In this section put the functions necessary to deliver the output in whatever form

required. For example, this section might contain functions for displaying the output on the screen.

Include comments where appropriate for documentation.

5. The programs in this text usually omit the comments in order to save space. These comments are

not necessary here because the text discussion associated with the program provides the required

documentation, and because we all know who wrote these programs!

Documenting Units of Measurement

We emphasize again that you must document the units of measurement for all the input and all the

output variables. More than one dramatic failure of an engineering system has been traced to the

misunderstanding of the units used for the input and output variables of the program used to design

the system. Table 1.4-1 lists common units and their abbreviations. The foot-pound-second system

(FPS) is also called the U.S. Customary System and the British Engineering System. SI (Systeme

Internationale) is the international metric system.

https://www.matlabhelp.com/problems-4/

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 68

Using Script Files to Store Data

Table : SI and FPS units

a set of daily temperature measurements at a particular location, which are needed from time to time

for calculations. As a short example, consider the following script file, whose name is my data.

m.The array temp_F contains temperatures in degrees Fahrenheit.

% File mydata.m: Stores temperature data.

% Stores the array temp_F,

% which contains temperatures in degrees Fahrenheit.

temp_F ~ [72, 68, 75, 77, 83, 79)

A session to access this data from the Command window, and convert the temperatures

to degrees Celsius, is

» mydata

temp _ F =

72 68 75 77 83 79

» temp _ C = 5 * (temp_F – 32) / 9

temp _ C =

22.2222 20.0000 23.8889 25.0000 28.3333 26.1111

Thus 68° Fahrenheit corresponds to 20° Celsius

Controlling Input and Output

MATLAB provides several useful commands for obtaining input from the user and for formatting

the output (the results obtained by executing the MATLAB commands). Table 1.4-2 summarizes

these commands. The methods presented in this section are particularly useful with script files.

You already know how to determine the current value of any variable by t) ping its name and

pressing Enter at the command prompt. However. This method. which is useful in the interactive

mode, is not useful for script files. The disp function (short for “display”) can be used instead. Its

syntax is di sp (A) , where A represents a MATL.A B variable name. Thus typing disp (Speed)

causes the value of the variable Speed to appear on the screen, but not the variable’s name.

https://www.matlabhelp.com/wp-content/uploads/2015/07/Capture20.jpg

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 69

The disp function can also display text. You enclose the text within single quotes. For example, the

command disp (‘The predicted speed is: ‘) causes the message to appear on the screen. This

command can be used with the first form of the disp function in a script file as follows (assuming

the value of Speed is 63)

dispt (‘The predict_ed speed is:’)

disp (Speed)

When the file is run, these lines produce the following on the screen:

The predicted speed is:

63

User Input

The input function displays text on the screen, waits for the user to enter something from the

keyboard, and then stores the input in the specified variable. For example, the command x = input (

‘Please enter the value of x:’) causes the message to appear on the screen. If you type 5 and press.

Enter: the variable x will have the value 5.

 A string variable is composed of text (alphanumeric characters). If you want to store a text input

as a string variable, use the other form of the inpu t command. For example, the command Calendar

= input (,Enter the day of the week:’ s “) prompts you to enter the day of the week. If you

type Wednesday, this text will be Stored in the string variable Calendar.

Use the menu function to generate a menu of choices for user input. Its syntax

is

k = menu(‘title’, ‘option1’, ‘option2’, …)

The function displays the menu whose title is in the string variable ‘ title and whose choices are

string variables’ option1′, ‘option2’, and soon. The returned value of k is I, 2,… depending on

whether you click on the button for option1, option2, and so forth. For example, the following script

uses a menu to select the data marker for a graph, assuming that the vectors x and y already exist.

k = menu(‘Choose a data marker’, ‘a’, ‘*’,’x’);

type = [‘ 0’ , ‘ *’ , ‘ x ‘):

plot (x,y,x,y,type (k)).

MATLAB offers several options for getting help on MathWorks® products. You can access

abbreviated function help text in the Command Window, or search the documentation for in-depth,

comprehensive help topics and examples. For information on specific issues not addressed in the

documentation, contact technical support.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 70

Functions

doc Reference page in Help browser

help Help for functions in Command Window

docsearch Help browser search

lookfor Search for keyword in all help entries

demo Access product examples in Help browser

echodemo Run example script step-by-step in Command Window

https://in.mathworks.com/help/matlab/ref/doc.html
https://in.mathworks.com/help/matlab/ref/help.html
https://in.mathworks.com/help/matlab/ref/docsearch.html
https://in.mathworks.com/help/matlab/ref/lookfor.html
https://in.mathworks.com/help/matlab/ref/demo.html
https://in.mathworks.com/help/matlab/ref/echodemo.html

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 71

7. MATLAB controls: Relational Logical Variables. Conditional Statements: if – else – else if,

switch Loops: for – while – break, continue. User-Defined Functions

In MATLAB environment, every variable is an array or matrix.

You can assign variables in a simple way. For example,

x = 3 % defining x and initializing it with a value

MATLAB will execute the above statement and return the following result −

x = 3

It creates a 1-by-1 matrix named x and stores the value 3 in its element. Let us check another

example,

x = sqrt(16) % defining x and initializing it with an expression

MATLAB will execute the above statement and return the following result −

x = 4

Please note that −

• Once a variable is entered into the system, you can refer to it later.

• Variables must have values before they are used.

• When an expression returns a result that is not assigned to any variable, the system assigns

it to a variable named ans, which can be used later.

For example,

sqrt(78)

MATLAB will execute the above statement and return the following result −

ans = 8.8318

You can use this variable ans −

sqrt(78);

9876/ans

MATLAB will execute the above statement and return the following result −

ans = 1118.2

Let's look at another example −

x = 7 * 8;

y = x * 7.89

MATLAB will execute the above statement and return the following result −

y = 441.84

Multiple Assignments

You can have multiple assignments on the same line. For example,

a = 2; b = 7; c = a * b

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 72

MATLAB will execute the above statement and return the following result −

c = 14

I have forgotten the Variables!

The who command displays all the variable names you have used.

who

MATLAB will execute the above statement and return the following result −

Your variables are:

a ans b c

The whos command displays little more about the variables −

• Variables currently in memory

• Type of each variables

• Memory allocated to each variable

• Whether they are complex variables or not

whos

MATLAB will execute the above statement and return the following result −

Attr Name Size Bytes Class

==== ==== ==== ==== =====

 a 1x1 8 double

 ans 1x70 757 cell

 b 1x1 8 double

 c 1x1 8 double

Total is 73 elements using 781 bytes

The clear command deletes all (or the specified) variable(s) from the memory.

clear x % it will delete x, won't display anything

clear % it will delete all variables in the workspace

 % peacefully and unobtrusively

Long Assignments

Long assignments can be extended to another line by using an ellipses (...). For example,

initial_velocity = 0;

acceleration = 9.8;

time = 20;

final_velocity = initial_velocity + acceleration * time

MATLAB will execute the above statement and return the following result −

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 73

final_velocity = 196

The format Command

By default, MATLAB displays numbers with four decimal place values. This is known as short

format.

However, if you want more precision, you need to use the format command.

The format long command displays 16 digits after decimal.

For example −

format long

x = 7 + 10/3 + 5 ^ 1.2

MATLAB will execute the above statement and return the following result−

x = 17.2319816406394

Another example,

format short

x = 7 + 10/3 + 5 ^ 1.2

MATLAB will execute the above statement and return the following result −

x = 17.232

The format bank command rounds numbers to two decimal places. For example,

format bank

daily_wage = 177.45;

weekly_wage = daily_wage * 6

MATLAB will execute the above statement and return the following result −

weekly_wage = 1064.70

MATLAB displays large numbers using exponential notation.

The format short e command allows displaying in exponential form with four decimal places plus

the exponent.

For example,

format short e

4.678 * 4.9

MATLAB will execute the above statement and return the following result −

ans = 2.2922e+01

The format long e command allows displaying in exponential form with four decimal places plus

the exponent. For example,

format long e

x = pi

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 74

MATLAB will execute the above statement and return the following result −

x = 3.141592653589793e+00

The format rat command gives the closest rational expression resulting from a calculation. For

example,

format rat

4.678 * 4.9

MATLAB will execute the above statement and return the following result −

ans = 34177/1491

Creating Vectors

A vector is a one-dimensional array of numbers. MATLAB allows creating two types of vectors

• Row vectors

• Column vectors

Row vectors are created by enclosing the set of elements in square brackets, using space or

comma to delimit the elements.

For example,

r = [7 8 9 10 11]

MATLAB will execute the above statement and return the following result −

r =[7 8 9 10 11]

Another example,

r = [7 8 9 10 11];

t = [2, 3, 4, 5, 6];

res = r + t

MATLAB will execute the above statement and return the following result −

res = 9 11 13 15 17

Column vectors are created by enclosing the set of elements in square brackets, using

semicolon(;) to delimit the elements.

c = [7; 8; 9; 10; 11]

MATLAB will execute the above statement and return the following result −

c =

 7

 8

 9

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 75

 10

 11

Creating Matrices

A matrix is a two-dimensional array of numbers.

In MATLAB, a matrix is created by entering each row as a sequence of space or comma separated

elements, and end of a row is demarcated by a semicolon. For example, let us create a 3-by-3

matrix as −

m = [1 2 3; 4 5 6; 7 8 9]

MATLAB will execute the above statement and return the following result −

m =

 1 2 3

 4 5 6

 7 8 9

Loops and Conditional Statements

Control flow and branching using keywords, such as if, for, and while

MATLAB Language Syntax

if, elseif, else Execute statements if condition is true

for for loop to repeat specified number of times

parfor Parallel for loop

switch, case, otherwise Execute one of several groups of statements

try, catch Execute statements and catch resulting errors

while while loop to repeat when condition is true

break Terminate execution of for or while loop

continue Pass control to next iteration of for or while loop

end Terminate block of code or indicate last array index

pause Stop MATLAB execution temporarily

return Return control to invoking script or function

Conditional Statements

Conditional statements enable you to select at run time which block of code to execute. The

simplest conditional statement is an if statement.

For example:

% Generate a random number

https://in.mathworks.com/help/matlab/ref/if.html
https://in.mathworks.com/help/matlab/ref/for.html
https://in.mathworks.com/help/matlab/ref/parfor.html
https://in.mathworks.com/help/matlab/ref/switch.html
https://in.mathworks.com/help/matlab/ref/try.html
https://in.mathworks.com/help/matlab/ref/while.html
https://in.mathworks.com/help/matlab/ref/break.html
https://in.mathworks.com/help/matlab/ref/continue.html
https://in.mathworks.com/help/matlab/ref/end.html
https://in.mathworks.com/help/matlab/ref/pause.html
https://in.mathworks.com/help/matlab/ref/return.html
https://in.mathworks.com/help/matlab/ref/if.html

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 76

a = randi(100, 1);

% If it is even, divide by 2

if rem(a, 2) == 0

 disp('a is even')

 b = a/2;

end

if statements can include alternate choices, using the optional keywords elseif or else.

For example:

a = randi(100, 1);

if a < 30

 disp('small')

elseif a < 80

 disp('medium')

else

 disp('large')

end

Alternatively, when you want to test for equality against a set of known values, use

a switch statement.

 For example:

[dayNum, dayString] = weekday(date, 'long', 'en_US');

switch dayString

 case 'Monday'

 disp('Start of the work week')

 case 'Tuesday'

 disp('Day 2')

 case 'Wednesday'

 disp('Day 3')

 case 'Thursday'

 disp('Day 4')

 case 'Friday'

 disp('Last day of the work week')

 otherwise

 disp('Weekend!')

https://in.mathworks.com/help/matlab/ref/switch.html

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 77

end

For both if and switch, MATLAB® executes the code corresponding to the first true condition, and

then exits the code block. Each conditional statement requires the end keyword.

In general, when you have many possible discrete, known values, switch statements are easier to

read than if statements. However, you cannot test for inequality between switch and case values.

For example, you cannot implement this type of condition with a switch:

yourNumber = input('Enter a number: ');

if yourNumber < 0

 disp('Negative')

elseif yourNumber > 0

 disp('Positive')

else

 disp('Zero')

end

Use if, elseif, and else for Conditional Assignment

Create a matrix of 1s.

nrows = 4;

ncols = 6;

A = ones(nrows,ncols);

Loop through the matrix and assign each element a new value. Assign 2 on the main diagonal, -1 on

the adjacent diagonals, and 0 everywhere else.

for c = 1:ncols

 for r = 1:nrows

 if r == c

 A(r,c) = 2;

 elseif abs(r-c) == 1

 A(r,c) = -1;

 else

 A(r,c) = 0;

 end

 end

end

A

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 78

Output:

A = 4×6

 2 -1 0 0 0 0

 -1 2 -1 0 0 0

 0 -1 2 -1 0 0

 0 0 -1 2 -1 0

Loops in mat lab document attached

User-Defined Functions

Custom function blocks such as MATLAB Function, MATLAB System, Simulink Function, and

Initialize Function

Blocks

C Caller Integrate C code in Simulink

Fcn Apply specified expression to input

Function Caller Call Simulink or exported Stateflow function

Initialize Function Executes contents on a model initialize event

Interpreted MATLAB Function Apply MATLAB function or expression to input

Level-2 MATLAB S-Function Use Level-2 MATLAB S-function in model

MATLAB Function Include MATLAB code in models that generate

embeddable C code

MATLAB System Include System object in model

Reset Function Executes contents on a model reset event

S-Function Include S-function in model

S-Function Builder Integrate C or C++ code to create S-functions

Simulink Function Function defined with Simulink blocks

Terminate Function Execute contents on a model terminate event

https://in.mathworks.com/help/simulink/slref/ccaller.html
https://in.mathworks.com/help/simulink/slref/fcn.html
https://in.mathworks.com/help/simulink/slref/functioncaller.html
https://in.mathworks.com/help/simulink/slref/initializefunction.html
https://in.mathworks.com/help/simulink/slref/interpretedmatlabfunction.html
https://in.mathworks.com/help/simulink/slref/level2matlabsfunction.html
https://in.mathworks.com/help/simulink/slref/matlabfunction.html
https://in.mathworks.com/help/simulink/slref/matlabsystem.html
https://in.mathworks.com/help/simulink/slref/resetfunction.html
https://in.mathworks.com/help/simulink/slref/sfunction.html
https://in.mathworks.com/help/simulink/slref/sfunctionbuilder.html
https://in.mathworks.com/help/simulink/slref/simulinkfunction.html
https://in.mathworks.com/help/simulink/slref/terminatefunction.html

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 79

8. Arrays, Matrices and Matrix Operations Debugging MATLAB Programs. Working with

Data Files, and Graphing Functions: XY Plots – Sub-plots.

Arrays, Matrices and Matrix Operations Debugging MATLAB Programs

All variables of all data types in MATLAB are multidimensional arrays. A vector is a one-

dimensional array and a matrix is a two-dimensional array.

We have already discussed vectors and matrices. In this chapter, we will discuss multidimensional

arrays. However, before that, let us discuss some special types of arrays.

Special Arrays in MATLAB

In this section, we will discuss some functions that create some special arrays. For all these

functions, a single argument creates a square array, double arguments create rectangular array.

The zeros() function creates an array of all zeros −

For example −

zeros(5)

MATLAB will execute the above statement and return the following result −

ans =

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

The ones() function creates an array of all ones −

For example −

ones(4,3)

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 80

MATLAB will execute the above statement and return the following result −

ans =

 1 1 1

 1 1 1

 1 1 1

 1 1 1

The eye() function creates an identity matrix.

For example −

eye(4)

MATLAB will execute the above statement and return the following result −

ans =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

The rand() function creates an array of uniformly distributed random numbers on (0,1) −

For example −

rand(3, 5)

MATLAB will execute the above statement and return the following result −

ans =

 0.8147 0.9134 0.2785 0.9649 0.9572

 0.9058 0.6324 0.5469 0.1576 0.4854

 0.1270 0.0975 0.9575 0.9706 0.8003

A Magic Square

A magic square is a square that produces the same sum, when its elements are added row-wise,

column-wise or diagonally.

The magic() function creates a magic square array. It takes a singular argument that gives the size

of the square. The argument must be a scalar greater than or equal to 3.

magic(4)

MATLAB will execute the above statement and return the following result −

ans =

 16 2 3 13

 5 11 10 8

 9 7 6 12

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 81

 4 14 15 1

Multidimensional Arrays

An array having more than two dimensions is called a multidimensional array in MATLAB.

Multidimensional arrays in MATLAB are an extension of the normal two-dimensional matrix.

Generally to generate a multidimensional array, we first create a two-dimensional array and extend

it.

For example, let's create a two-dimensional array a.

a = [7 9 5; 6 1 9; 4 3 2]

MATLAB will execute the above statement and return the following result −

a =

 7 9 5

 6 1 9

 4 3 2

The array a is a 3-by-3 array; we can add a third dimension to a, by providing the values like −

a(:, :, 2)= [1 2 3; 4 5 6; 7 8 9]

MATLAB will execute the above statement and return the following result −

a =

ans(:,:,1) =

 0 0 0

 0 0 0

 0 0 0

ans(:,:,2) =

 1 2 3

 4 5 6

 7 8 9

We can also create multidimensional arrays using the ones(), zeros() or the rand() functions.

For example,

b = rand(4,3,2)

MATLAB will execute the above statement and return the following result −

b(:,:,1) =

 0.0344 0.7952 0.6463

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 82

 0.4387 0.1869 0.7094

 0.3816 0.4898 0.7547

 0.7655 0.4456 0.2760

b(:,:,2) =

 0.6797 0.4984 0.2238

 0.6551 0.9597 0.7513

 0.1626 0.3404 0.2551

 0.1190 0.5853 0.5060

We can also use the cat() function to build multidimensional arrays. It concatenates a list of arrays

along a specified dimension −

Syntax for the cat() function is −

B = cat(dim, A1, A2...)

Where,

• B is the new array created

• A1, A2, ... are the arrays to be concatenated

• dim is the dimension along which to concatenate the arrays

Example

Create a script file and type the following code into it −

a = [9 8 7; 6 5 4; 3 2 1];

b = [1 2 3; 4 5 6; 7 8 9];

c = cat(3, a, b, [2 3 1; 4 7 8; 3 9 0])

When you run the file, it displays −

c(:,:,1) =

 9 8 7

 6 5 4

 3 2 1

c(:,:,2) =

 1 2 3

 4 5 6

 7 8 9

c(:,:,3) =

 2 3 1

 4 7 8

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 83

 3 9 0

Array Functions

MATLAB provides the following functions to sort, rotate, permute, reshape, or shift array

contents.

Function Purpose

length Length of vector or largest array dimension

ndims Number of array dimensions

numel Number of array elements

size Array dimensions

iscolumn Determines whether input is column vector

isempty Determines whether array is empty

ismatrix Determines whether input is matrix

isrow Determines whether input is row vector

isscalar Determines whether input is scalar

isvector Determines whether input is vector

blkdiag Constructs block diagonal matrix from input arguments

circshift Shifts array circularly

ctranspose Complex conjugate transpose

diag Diagonal matrices and diagonals of matrix

flipdim Flips array along specified dimension

fliplr Flips matrix from left to right

flipud Flips matrix up to down

ipermute Inverses permute dimensions of N-D array

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 84

permute Rearranges dimensions of N-D array

repmat Replicates and tile array

reshape Reshapes array

rot90 Rotates matrix 90 degrees

shiftdim Shifts dimensions

issorted Determines whether set elements are in sorted order

sort Sorts array elements in ascending or descending order

sortrows Sorts rows in ascending order

squeeze Removes singleton dimensions

transpose Transpose

vectorize Vectorizes expression

Examples

The following examples illustrate some of the functions mentioned above.

Length, Dimension and Number of elements −

Create a script file and type the following code into it −

x = [7.1, 3.4, 7.2, 28/4, 3.6, 17, 9.4, 8.9];

length(x) % length of x vector

y = rand(3, 4, 5, 2);

ndims(y) % no of dimensions in array y

s = ['Zara', 'Nuha', 'Shamim', 'Riz', 'Shadab'];

numel(s) % no of elements in s

When you run the file, it displays the following result −

ans = 8

ans = 4

ans = 23

Circular Shifting of the Array Elements −

Create a script file and type the following code into it −

a = [1 2 3; 4 5 6; 7 8 9] % the original array a

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 85

b = circshift(a,1) % circular shift first dimension values down by 1.

c = circshift(a,[1 -1]) % circular shift first dimension values % down by 1

 % and second dimension values to the left % by 1.

When you run the file, it displays the following result −

a =

 1 2 3

 4 5 6

 7 8 9

b =

 7 8 9

 1 2 3

 4 5 6

c =

 8 9 7

 2 3 1

 5 6 4

Sorting Arrays

Create a script file and type the following code into it −

v = [23 45 12 9 5 0 19 17] % horizontal vector

sort(v) % sorting v

m = [2 6 4; 5 3 9; 2 0 1] % two dimensional array

sort(m, 1) % sorting m along the row

sort(m, 2) % sorting m along the column

When you run the file, it displays the following result −

v =

 23 45 12 9 5 0 19 17

ans =

 0 5 9 12 17 19 23 45

m =

 2 6 4

 5 3 9

 2 0 1

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 86

ans =

 2 0 1

 2 3 4

 5 6 9

ans =

 2 4 6

 3 5 9

 0 1 2

Cell Array

Cell arrays are arrays of indexed cells where each cell can store an array of a different dimensions

and data types.

The cell function is used for creating a cell array. Syntax for the cell function is −

C = cell(dim)

C = cell(dim1,...,dimN)

D = cell(obj)

Where,

• C is the cell array;

• dim is a scalar integer or vector of integers that specifies the dimensions of cell array C;

• dim1, ... , dimN are scalar integers that specify the dimensions of C;

• obj is One of the following −

o Java array or object

o .NET array of type System.String or System.Object

Example

Create a script file and type the following code into it −

c = cell(2, 5);

c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5}

When you run the file, it displays the following result −

c =

{

 [1,1] = Red

 [2,1] = 1

 [1,2] = Blue

 [2,2] = 2

 [1,3] = Green

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 87

 [2,3] = 3

 [1,4] = Yellow

 [2,4] = 4

 [1,5] = White

 [2,5] = 5

}

Accessing Data in Cell Arrays

There are two ways to refer to the elements of a cell array −

• Enclosing the indices in first bracket (), to refer to sets of cells

• Enclosing the indices in braces {}, to refer to the data within individual cells

When you enclose the indices in first bracket, it refers to the set of cells.

Cell array indices in smooth parentheses refer to sets of cells.

For example −

c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5};

c(1:2,1:2)

MATLAB will execute the above statement and return the following result −

ans =

{

 [1,1] = Red

 [2,1] = 1

 [1,2] = Blue

 [2,2] = 2

}

You can also access the contents of cells by indexing with curly braces.

For example −

c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5};

c{1, 2:4}

MATLAB will execute the above statement and return the following result −

ans = Blue

ans = Green

ans = Yellow

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 88

Matrix

A matrix is a two-dimensional array of numbers.

In MATLAB, you create a matrix by entering elements in each row as comma or space delimited

numbers and using semicolons to mark the end of each row.

For example, let us create a 4-by-5 matrix a −

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8]

MATLAB will execute the above statement and return the following result −

a =

 1 2 3 4 5

 2 3 4 5 6

 3 4 5 6 7

 4 5 6 7 8

Referencing the Elements of a Matrix

To reference an element in the mth row and nth column, of a matrix mx, we write −

mx(m, n);

For example, to refer to the element in the 2nd row and 5th column, of the matrix a, as created in the

last section, we type −

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(2,5)

MATLAB will execute the above statement and return the following result −

ans = 6

To reference all the elements in the mth column we type A(:,m).

Let us create a column vector v, from the elements of the 4th row of the matrix a −

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

v = a(:,4)

MATLAB will execute the above statement and return the following result −

v =

 4

 5

 6

 7

You can also select the elements in the mth through nth columns, for this we write −

a(:,m:n)

Let us create a smaller matrix taking the elements from the second and third columns −

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 89

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(:, 2:3)

MATLAB will execute the above statement and return the following result −

ans =

 2 3

 3 4

 4 5

 5 6

In the same way, you can create a sub-matrix taking a sub-part of a matrix.

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(:, 2:3)

MATLAB will execute the above statement and return the following result −

ans =

 2 3

 3 4

 4 5

 5 6

In the same way, you can create a sub-matrix taking a sub-part of a matrix.

For example, let us create a sub-matrix sa taking the inner subpart of a −

3 4 5

4 5 6

To do this, write −

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

sa = a(2:3,2:4)

MATLAB will execute the above statement and return the following result −

sa =

 3 4 5

 4 5 6

Deleting a Row or a Column in a Matrix

You can delete an entire row or column of a matrix by assigning an empty set of square braces []

to that row or column. Basically, [] denotes an empty array.

For example, let us delete the fourth row of a −

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(4 , :) = []

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 90

MATLAB will execute the above statement and return the following result −

a =

 1 2 3 4 5

 2 3 4 5 6

 3 4 5 6 7

Next, let us delete the fifth column of a −

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(: , 5)=[]

MATLAB will execute the above statement and return the following result −

a =

 1 2 3 4

 2 3 4 5

 3 4 5 6

 4 5 6 7

Example

In this example, let us create a 3-by-3 matrix m, then we will copy the second and third rows of

this matrix twice to create a 4-by-3 matrix.

Create a script file with the following code −

a = [1 2 3 ; 4 5 6; 7 8 9];

new_mat = a([2,3,2,3],:)

When you run the file, it displays the following result −

new_mat =

 4 5 6

 7 8 9

 4 5 6

 7 8 9

Matrix Operations

In this section, let us discuss the following basic and commonly used matrix operations −

• Addition and Subtraction of Matrices

• Division of Matrices

• Scalar Operations of Matrices

• Transpose of a Matrix

• Concatenating Matrices

• Matrix Multiplication

https://www.tutorialspoint.com/matlab/matlab_matrix_add_subtract.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_division.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_scalar_operation.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_transpose.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_concatenation.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_multiplication.htm

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 91

• Determinant of a Matrix

• Inverse of a Matrix

Working with data files

Tools that Import Multiple File Formats

You can import data into MATLAB from a disk file or the system clipboard interactively.

To import data from a file, do one of the following:

• On the Home tab, in the Variable section, select Import Data .

• Double-click a file name in the Current Folder browser.

• Call uiimport.

To import data from the clipboard, do one of the following:

• On the Workspace browser title bar, click , and then select Paste.

• Call uiimport.

To import without invoking a graphical user interface, the easiest option is to use

the importdata function.

For a complete list of the formats you can import interactively or with importdata, see Supported

File Formats for Import and Export.

Importing Specific File Formats

MATLAB includes functions tailored to import specific file formats. Consider using format-

specific functions instead of importing data interactively when you want to import only a portion of

a file. Many of the format-specific functions provide options for selecting ranges or portions of

data. Some format-specific functions allow you to request multiple optional outputs. This option is

not available when you import interactively.

For a complete list of the format-specific functions, see Supported File Formats for Import and

Export.

For binary data files, consider Overview of Memory-Mapping. Memory-mapping enables you to

access file data using standard MATLAB indexing operations.

Alternatively, MATLAB toolboxes perform specialized import operations. For example, use

Database Toolbox™ software for importing data from relational databases. Refer to the

documentation on specific toolboxes to see the available import features.

Importing Data with Low-Level I/O

If the Import Wizard, importdata, and format-specific functions cannot read your data, use low-level

I/O functions such as fscanf or fread. Low-level functions allow the most control over reading from

a file, but require detailed knowledge of the structure of your data. For more information, see:

• Import Text Data Files with Low-Level I/O

• Import Binary Data with Low-Level I/O

https://www.tutorialspoint.com/matlab/matlab_matrix_determinant.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_inverse.htm
https://in.mathworks.com/help/matlab/ref/importtool-app.html
https://in.mathworks.com/help/matlab/ref/importdata.html
https://in.mathworks.com/help/matlab/import_export/supported-file-formats.html
https://in.mathworks.com/help/matlab/import_export/supported-file-formats.html
https://in.mathworks.com/help/matlab/import_export/supported-file-formats.html
https://in.mathworks.com/help/matlab/import_export/supported-file-formats.html
https://in.mathworks.com/help/matlab/import_export/overview-of-memory-mapping.html
https://in.mathworks.com/help/matlab/import_export/import-text-data-files-with-low-level-io.html
https://in.mathworks.com/help/matlab/import_export/importing-binary-data-with-low-level-i-o.html

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 92

Importing data in MATLAB means loading data from an external file. The importdata function

allows loading various data files of different formats. It has the following five forms −

Sr.No. Function & Description

1 A = importdata(filename)

Loads data into array A from the file denoted by filename.

2 A = importdata('-pastespecial')

Loads data from the system clipboard rather than from a file.

3 A = importdata(___, delimiterIn)

Interprets delimiterIn as the column separator in ASCII file, filename, or the

clipboard data. You can use delimiterIn with any of the input arguments in

the above syntaxes.

4 A = importdata(___, delimiterIn, headerlinesIn)

Loads data from ASCII file, filename, or the clipboard, reading numeric

data starting from line headerlinesIn+1.

5 [A, delimiterOut, headerlinesOut] = importdata(___)

Returns the detected delimiter character for the input ASCII file

in delimiterOut and the detected number of header lines in headerlinesOut,

using any of the input arguments in the previous syntaxes.

By default, Octave does not have support for importdata() function, so you will have to search and

install this package to make following examples work with your Octave installation.

Example 1

Let us load and display an image file. Create a script file and type the following code in it −

filename = 'random.jpg';

A = importdata(filename);

image(A);

When you run the file, MATLAB displays the image file. However, you must store it in the current

directory.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 93

Example 2

In this example, we import a text file and specify Delimiter and Column Header. Let us create a

space-delimited ASCII file with column headers, named weeklydata.txt.

Our text file weeklydata.txt looks like this −

SunDay MonDay TuesDay WednesDay ThursDay FriDay SaturDay

95.01 76.21 61.54 40.57 55.79 70.28 81.53

73.11 45.65 79.19 93.55 75.29 69.87 74.68

60.68 41.85 92.18 91.69 81.32 90.38 74.51

48.60 82.14 73.82 41.03 0.99 67.22 93.18

89.13 44.47 57.63 89.36 13.89 19.88 46.60

Create a script file and type the following code in it −

filename = 'weeklydata.txt';

delimiterIn = ' ';

headerlinesIn = 1;

A = importdata(filename,delimiterIn,headerlinesIn);

% View data

for k = [1:7]

 disp(A.colheaders{1, k})

 disp(A.data(:, k))

 disp(' ')

end

When you run the file, it displays the following result −

SunDay

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 94

 95.0100

 73.1100

 60.6800

 48.6000

 89.1300

MonDay

 76.2100

 45.6500

 41.8500

 82.1400

 44.4700

TuesDay

 61.5400

 79.1900

 92.1800

 73.8200

 57.6300

WednesDay

 40.5700

 93.5500

 91.6900

 41.0300

 89.3600

ThursDay

 55.7900

 75.2900

 81.3200

 0.9900

 13.8900

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 95

FriDay

 70.2800

 69.8700

 90.3800

 67.2200

 19.8800

SaturDay

 81.5300

 74.6800

 74.5100

 93.1800

 46.6000

Example 3

In this example, let us import data from clipboard.

Copy the following lines to the clipboard −

Mathematics is simple

Create a script file and type the following code −

A = importdata('-pastespecial')

When you run the file, it displays the following result −

A =

 'Mathematics is simple'

Low-Level File I/O

The importdata function is a high-level function. The low-level file I/O functions in MATLAB

allow the most control over reading or writing data to a file. However, these functions need more

detailed information about your file to work efficiently.

MATLAB provides the following functions for read and write operations at the byte or character

level −

Function Description

fclose Close one or all open files

feof Test for end-of-file

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 96

ferror Information about file I/O errors

fgetl Read line from file, removing newline characters

fgets Read line from file, keeping newline characters

fopen Open file, or obtain information about open files

fprintf Write data to text file

fread Read data from binary file

frewind Move file position indicator to beginning of open file

fscanf Read data from text file

fseek Move to specified position in file

ftell Position in open file

fwrite Write data to binary file

Import Text Data Files with Low-Level I/O

MATLAB provides the following functions for low-level import of text data files −

• The fscanf function reads formatted data in a text or ASCII file.

• The fgetl and fgets functions read one line of a file at a time, where a newline character

separates each line.

• The fread function reads a stream of data at the byte or bit level.

Example

We have a text data file 'myfile.txt' saved in our working directory. The file stores rainfall data for

three months; June, July and August for the year 2012.

The data in myfile.txt contains repeated sets of time, month and rainfall measurements at five

places. The header data stores the number of months M; so we have M sets of measurements.

The file looks like this −

Rainfall Data

Months: June, July, August

 M = 3

12:00:00

June-2012

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 97

17.21 28.52 39.78 16.55 23.67

19.15 0.35 17.57 NaN 12.01

17.92 28.49 17.40 17.06 11.09

9.59 9.33 NaN 0.31 0.23

10.46 13.17 NaN 14.89 19.33

20.97 19.50 17.65 14.45 14.00

18.23 10.34 17.95 16.46 19.34

09:10:02

July-2012

12.76 16.94 14.38 11.86 16.89

20.46 23.17 NaN 24.89 19.33

30.97 49.50 47.65 24.45 34.00

18.23 30.34 27.95 16.46 19.34

30.46 33.17 NaN 34.89 29.33

30.97 49.50 47.65 24.45 34.00

28.67 30.34 27.95 36.46 29.34

15:03:40

August-2012

17.09 16.55 19.59 17.25 19.22

17.54 11.45 13.48 22.55 24.01

NaN 21.19 25.85 25.05 27.21

26.79 24.98 12.23 16.99 18.67

17.54 11.45 13.48 22.55 24.01

NaN 21.19 25.85 25.05 27.21

26.79 24.98 12.23 16.99 18.67

We will import data from this file and display this data. Take the following steps −

• Open the file with fopen function and get the file identifier.

• Describe the data in the file with format specifiers, such as '%s' for a string, '%d' for an

integer, or '%f' for a floating-point number.

• To skip literal characters in the file, include them in the format description. To skip a data

field, use an asterisk ('*') in the specifier.

For example, to read the headers and return the single value for M, we write −

M = fscanf(fid, '%*s %*s\n%*s %*s %*s %*s\nM=%d\n\n', 1);

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 98

• By default, fscanf reads data according to our format description until it does not find any

match for the data, or it reaches the end of the file. Here we will use for loop for reading 3

sets of data and each time, it will read 7 rows and 5 columns.

• We will create a structure named mydata in the workspace to store data read from the file.

This structure has three fields - time, month, and raindata array.

Create a script file and type the following code in it −

filename = '/data/myfile.txt';

rows = 7;

cols = 5;

% open the file

fid = fopen(filename);

% read the file headers, find M (number of months)

M = fscanf(fid, '%*s %*s\n%*s %*s %*s %*s\nM=%d\n\n', 1);

% read each set of measurements

for n = 1:M

 mydata(n).time = fscanf(fid, '%s', 1);

 mydata(n).month = fscanf(fid, '%s', 1);

 % fscanf fills the array in column order,

 % so transpose the results

 mydata(n).raindata = ...

 fscanf(fid, '%f', [rows, cols]);

end

for n = 1:M

 disp(mydata(n).time), disp(mydata(n).month)

 disp(mydata(n).raindata)

end

% close the file

fclose(fid);

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 99

When you run the file, it displays the following result −

12:00:00

June-2012

 17.2100 17.5700 11.0900 13.1700 14.4500

 28.5200 NaN 9.5900 NaN 14.0000

 39.7800 12.0100 9.3300 14.8900 18.2300

 16.5500 17.9200 NaN 19.3300 10.3400

 23.6700 28.4900 0.3100 20.9700 17.9500

 19.1500 17.4000 0.2300 19.5000 16.4600

 0.3500 17.0600 10.4600 17.6500 19.3400

09:10:02

July-2012

 12.7600 NaN 34.0000 33.1700 24.4500

 16.9400 24.8900 18.2300 NaN 34.0000

 14.3800 19.3300 30.3400 34.8900 28.6700

 11.8600 30.9700 27.9500 29.3300 30.3400

 16.8900 49.5000 16.4600 30.9700 27.9500

 20.4600 47.6500 19.3400 49.5000 36.4600

 23.1700 24.4500 30.4600 47.6500 29.3400

15:03:40

August-2012

 17.0900 13.4800 27.2100 11.4500 25.0500

 16.5500 22.5500 26.7900 13.4800 27.2100

 19.5900 24.0100 24.9800 22.5500 26.7900

 17.2500 NaN 12.2300 24.0100 24.9800

 19.2200 21.1900 16.9900 NaN 12.2300

 17.5400 25.8500 18.6700 21.1900 16.9900

 11.4500 25.0500 17.5400 25.8500 18.6700

Line Plots

To create two-dimensional line plots, use the plot function. For example, plot the value of the sine

function from 0 to 2π:

x = 0:pi/100:2*pi;

y = sin(x);

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 100

plot(x,y)

You can label the axes and add a title.

xlabel('x')

ylabel('sin(x)')

title('Plot of the Sine Function')

By adding a third input argument to the plot function, you can plot the same variables using a red

dashed line.

plot(x,y,'r--')

'r--' is a line specification. Each specification can include characters for the line color, style, and

marker. A marker is a symbol that appears at each plotted data point, such as a +, o, or *. For

example, 'g:*' requests a dotted green line with * markers.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 101

Notice that the titles and labels that you defined for the first plot are no longer in the

current figure window. By default, MATLAB® clears the figure each time you call a plotting

function, resetting the axes and other elements to prepare the new plot.

To add plots to an existing figure, use hold on. Until you use hold off or close the window, all plots

appear in the current figure window.

x = 0:pi/100:2*pi;

y = sin(x);

plot(x,y)

hold on

y2 = cos(x);

plot(x,y2,':')

legend('sin','cos')

hold off

3-D Plots

Three-dimensional plots typically display a surface defined by a function in two variables, z =

f(x,y) .

To evaluate z, first create a set of (x,y) points over the domain of the function using meshgrid.

[X,Y] = meshgrid(-2:.2:2);

Z = X .* exp(-X.^2 - Y.^2);

Then, create a surface plot.

surf(X,Y,Z)

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 102

Both the surf function and its companion mesh display surfaces in three dimensions. surf displays

both the connecting lines and the faces of the surface in color. mesh produces wireframe surfaces

that color only the lines connecting the defining points.

Subplots

You can display multiple plots in different subregions of the same window using

the subplot function.

The first two inputs to subplot indicate the number of plots in each row and column. The third input

specifies which plot is active. For example, create four plots in a 2-by-2 grid within a figure

window.

t = 0:pi/10:2*pi;

[X,Y,Z] = cylinder(4*cos(t));

subplot(2,2,1); mesh(X); title('X');

subplot(2,2,2); mesh(Y); title('Y');

subplot(2,2,3); mesh(Z); title('Z');

subplot(2,2,4); mesh(X,Y,Z); title('X,Y,Z');

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 103

ADDITIONAL PROGRAMS

PROGRAM 9 : Python Program to detect if two strings are anagrams.

Problem Description

Aim:The program takes two strings and checks if the two strings are anagrams.

Problem Solution

1. Take two strings from the user and store them in separate variables.

2. Then use sorted() to sort both the strings into lists.

3. Compare the sorted lists and check if they are equal.

4. Print the final result.

5. Exit.

Program/Source Code

Here is source code of the Python Program to detect if two strings are anagrams. The program

output is also shown below.

s1=raw_input("Enter first string:")

s2=raw_input("Enter second string:")

if(sorted(s1)==sorted(s2)):

 print("The strings are anagrams.")

else:

 print("The strings aren't anagrams.")

Program Explanation

1. User must enter both the strings and store them in separate variables.

2. The characters of both the strings are sorted into separate lists.

3. They are then checked whether they are equal or not using an if statement.

4. If they are equal, they are anagrams as the characters are simply jumbled in anagrams.

5. If they aren’t equal, the strings aren’t anagrams.

6. The final result is printed.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 104

Runtime Test Cases

 Case 1:

Enter first string:anagram

Enter second string:nagaram

The strings are anagrams.

Case 2:

Enter first string:hello

Enter second string:world

The strings aren't anagrams.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 105

PROGRAM 10.Python Program to calculate the number of digits and letters in a string.

Problem Description

Aim: The program takes a string and calculates the number of digits and letters in a string.

Problem Solution

1. Take a string from the user and store it in a variable.

2. Initialize the two count variables to 0.

3. Use a for loop to traverse through the characters in the string and increment the first count

variable each time a digit is encountered and increment the second count variable each time a

character is encountered.

4. Print the total count of both the variables.

5. Exit.

Program/Source Code

Here is source code of the Python Program to calculate the number of digits and letters in a string.

The program output is also shown below.

string=raw_input("Enter string:")

count1=0

count2=0

for i in string:

 if(i.isdigit()):

 count1=count1+1

 count2=count2+1

print("The number of digits is:")

print(count1)

print("The number of characters is:")

print(count2)

Program Explanation

1. User must enter a string and store it in a variable.

2. Both the count variables are initialized to zero.

3. The for loop is used to traverse through the characters in the string.

4. The first count variable is incremented each time a digit is encountered and the second count

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 106

variable is incremented each time a character is encountered.

5. The total count of digits and characters in the string are printed.

Runtime Test Cases

Case 1:

Enter string:Hello123

The number of digits is:

3

The number of characters is:

8

Case 2:

Enter string:Abc12

The number of digits is:

2

The number of characters is:

5

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 107

PROGRAM 11.Python Program to check common letters in the two input strings.

Problem Description

Aim:The program takes two strings and checks common letters in both the strings.

Problem Solution

1. Enter two input strings and store it in separate variables.

2. Convert both of the strings into sets and find the common letters between both the sets.

3. Store the common letters in a list.

4. Use a for loop to print the letters of the list.

5. Exit.

Program/Source Code

Here is source code of the Python Program to check common letters in the two input strings. The

program output is also shown below.

s1=raw_input("Enter first string:")

s2=raw_input("Enter second string:")

a=list(set(s1)&set(s2))

print("The common letters are:")

for i in a:

 print(i)

Program Explanation

1. User must enter two input strings and store it in separate variables.

2. Both of the strings are converted into sets and the common letters between both the sets are found

using the ‘&’ operator.

3. These common letters are stored in a list.

4. A for loop is used to print the letters of the list.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 108

Runtime Test Cases

Case 1:

Enter first string:Hello

Enter second string:How are you

The common letters are:

H

e

o

Case 2:

Enter first string:Test string

Enter second string:checking

The common letters are:

i

e

g

n

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 109

PROGRAM 12.Python Program to find the factorial of a number using recursion.

Problem Description

Aim:The program takes a number and determines the factorial of the number using recursion.

Problem Solution

1. Take a number from the user and store it in a variable.

2. Pass the number as an argument to a recursive factorial function.

3. Define the base condition as the number to be lesser than or equal to 1 and return 1 if it is.

4. Otherwise call the function recursively with the number minus 1 multiplied by the number itself.

5. Then return the result and print the factorial of the number.

6. Exit.

Program/Source Code

Here is source code of the Python Program to find the factorial of a number using recursion. The

program output is also shown below.

def factorial(n):

 if(n <= 1):

 return 1

 else:

 return(n*factorial(n-1))

n = int(input("Enter number:"))

print("Factorial:")

print(factorial(n))

Program Explanation

1. User must enter a number and store it in a variable.

2. The number is passed as an argument to a recursive factorial function.

3. The base condition is that the number has to be lesser than or equal to 1 and return 1 if it is.

4. Otherwise the function is called recursively with the number minus 1 multiplied by the number

itself.

5. The result is returned and the factorial of the number is printed.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 110

Runtime Test Cases

Case 1:

Enter number:5

Factorial:

120

Case 2:

Enter number:9

Factorial:

362880

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 111

PROGRAM 13. Python Program to find the area of a rectangle using classes.

Problem Description

Aim:The program takes the length and breadth from the user and finds the area of the rectangle

using classes.

Problem Solution

1. Take the value of length and breadth from the user.

2. Create a class and using a constructor initialise values of that class.

3. Create a method called as area and return the area of the class.

4. Create an object for the class.

5. Using the object, call the method area() with the parameters as the length and breadth taken from

the user.

6. Print the area.

7. Exit

Program/Source Code

Here is the source code of the Python Program to take the length and breadth from the user and find

the area of the rectangle. The program output is also shown below.

class rectangle():

 def __init__(self,breadth,length):

 self.breadth=breadth

 self.length=length

 def area(self):

 return self.breadth*self.length

a=int(input("Enter length of rectangle: "))

b=int(input("Enter breadth of rectangle: "))

obj=rectangle(a,b)

print("Area of rectangle:",obj.area())

 print()

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 112

Program Explanation

1. User must enter the value of length and breadth.

2. A class called rectangle is created and the __init__() method is used to initialise values of that

class.

3. A method called as area, returns self.length*self.breadth which is the area of the class.

4. An object for the class is created.

5. Using the object, the method area() is called with the parameters as the length and breadth taken

from the user.

6. The area is printed.

Runtime Test Cases

 Case 1:

Enter length of rectangle: 4

Enter breadth of rectangle: 5

Area of rectangle: 20

Case 2:

Enter length of rectangle: 15

Enter breadth of rectangle: 13

Area of rectangle: 195

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 113

PROGRAM 14. Python Program to find the area of a rectangle using classes.

Problem Description

Aim:The program takes the length and breadth from the user and finds the area of the rectangle

using classes.

Problem Solution

1. Create a class and using a constructor to initialize values of that class.

2. Create methods for adding, substracting, multiplying and dividing two numbers and returning the

respective results.

3. Take the two numbers as inputs and create an object for the class passing the two numbers as

parameters to the class.

4. Using the object, call the respective function depending on the choice taken from the user.

5. Print the final result.

6. Exit

Program/Source Code

Here is the source code of the Python Program to take the length and breadth from the user and find

the area of the rectangle. The program output is also shown below.

class cal():

 def __init__(self,a,b):

 self.a=a

 self.b=b

 def add(self):

 return self.a+self.b

 def mul(self):

 return self.a*self.b

 def div(self):

 return self.a/self.b

 def sub(self):

 return self.a-self.b

a=int(input("Enter first number: "))

b=int(input("Enter second number: "))

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 114

obj=cal(a,b)

choice=1

while choice!=0:

 print("0. Exit")

 print("1. Add")

 print("2. Subtraction")

 print("3. Multiplication")

 print("4. Division")

 choice=int(input("Enter choice: "))

 if choice==1:

 print("Result: ",obj.add())

 elif choice==2:

 print("Result: ",obj.sub())

 elif choice==3:

 print("Result: ",obj.mul())

 elif choice==4:

 print("Result: ",round(obj.div(),2))

 elif choice==0:

 print("Exiting!")

 else:

 print("Invalid choice!!")

print()

Program Explanation

1. A class called cal is created and the __init__() method is used to initialize values of that class.

2. Methods for adding, substracting, multiplying, dividing two numbers and returning their

respective results is defined.

3. The menu is printed and the choice is taken from the user.

4. An object for the class is created with the two numbers taken from the user passed as parameters.

5. Using the object, the respective method is called according to the choice taken from the user.

6. When the choice is 0, the loop is exited.

7. The final result is printed.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 115

Runtime Test Cases

Case 1:

Enter first number: 2

Enter second number: 4

0. Exit

1. Add

2. Subtraction

3. Multiplication

4. Division

Enter choice: 1

Result: 6

0. Exit

1. Add

2. Subtraction

3. Multiplication

4. Division

Enter choice: 3

Result: 8

0. Exit

1. Add

2. Subtraction

3. Multiplication

4. Division

Enter choice: 0

Exiting!

Case 2:

Enter first number: 150

Enter second number: 50

0. Exit

1. Add

2. Subtraction

3. Multiplication

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 116

4. Division

Enter choice: 2

Result: 100

0. Exit

1. Add

2. Subtraction

3. Multiplication

4. Division

Enter choice: 4

Result: 3.0

0. Exit

1. Add

2. Subtraction

3. Multiplication

4. Division

Enter choice: 0

Exiting!

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 117

PROGRAM 15: Extracting the individual element(s) of a matrix

Aim: retrieve single element from the matrix

A = [3 5; 2 4]; c =

A(2,2)+A(1,2)

Output:

c = 9

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 118

PROGRAM 16: Create a prompt to request user input

Aim: reading input from the user

num1 = input('Enter your age'); if (num1 > 17)

fprintf('You are eligible to vote') else fprintf('You are not eligible to vote')

end

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 119

PROGRAM 17: MAT LAB program to develop An application - determine whether a given

year is a leap year (try to change the given value of nyear and observe the outcome)

Aim: Find weather given year is leap year or not

nyear = 1975;

if (mod(nyear, 400) == 0) fprintf('%6u is a leap year', nyear)

elseif (mod(nyear,4) == 0) & (mod(nyear,100) ~= 0) fprintf('%6u is a

leap year', nyear)

else

fprintf('%6u is not a leap year', nyear) end

Output:

1975 is not a leap year

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 120

VIVA VOCE

PYTHON VIVA QUESTIONS

1.What are the applications of Python?

Python is used in various software domains some application areas are given below.

o Web and Internet Development

o Games

o Scientific and computational applications

o Language development

o Image processing and graphic design applications

o Enterprise and business applications development

o Operating systems

o GUI based desktop applications

2.What are the advantages of Python?

o Interpreted

o Free and open source

o Extensible

o Object-oriented

o Built-in data structure

o Readability

o High-Level Language

o Cross-platform

Interpreted: Python is an interpreted language. It does not require prior compilation of code

and executes instructions directly.

o Free and open source: It is an open source project which is publicly available to reuse. It can

be downloaded free of cost.

o Portable: Python programs can run on cross platforms without affecting its performance.

3. What do you mean by Python literals?

Literals can be defined as a data which is given in a variable or constant. Python supports the

following literals:

String Literals

String literals are formed by enclosing text in the single or double quotes. For example, string

literals are string values.

E.g.:"Aman", '12345'.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 121

4. Explain Python Functions?

A function is a section of the program or a block of code that is written once and can be executed

whenever required in the program. A function is a block of self-contained statements which has a

valid name, parameters list, and body. Functions make programming more functional and modular

to perform modular tasks. Python provides several built-in functions to complete tasks and also

allows a user to create new functions as well.

There are two types of functions:

o Built-In Functions: copy(), len(), count() are the some built-in functions.

o User-defined Functions: Functions which are defined by a user known as user-defined

functions.

5.What is Python's parameter passing mechanism?

There are two parameters passing mechanism in Python:

o Pass by references

o Pass by value

6.Is python a case sensitive language?

Yes! Python is a case sensitive programming language.

7.What are the supported data types in Python?

Python has five standard data types −

• Numbers

• String

• List

• Tuple

• Dictionary

8.What is the output of print str if str = 'Hello World!'?

It will print complete string. Output would be Hello World!.

9.What is the output of print str[0] if str = 'Hello World!'?

It will print first character of the string. Output would be H.

10.What is the output of print str[2:5] if str = 'Hello World!'?

It will print characters starting from 3rd to 5th. Output would be llo.

11.What is the output of print str[2:] if str = 'Hello World!'?

It will print characters starting from 3rd character. Output would be llo World!.

12.What is the output of print str * 2 if str = 'Hello World!'?

It will print string two times. Output would be Hello World!Hello World!.

13.What is the output of print str + "TEST" if str = 'Hello World!'?

It will print concatenated string. Output would be Hello World!TEST.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 122

14.What is the output of print list if list = ['abcd', 786 , 2.23, 'john', 70.2]?

It will print complete list. Output would be ['abcd', 786, 2.23, 'john', 70.200000000000003].

15.What is the output of print list[0] if list = ['abcd', 786 , 2.23, 'john', 70.2]?

It will print first element of the list. Output would be abcd.

16.What is the output of print list[1:3] if list = ['abcd', 786 , 2.23, 'john', 70.2]?

It will print elements starting from 2nd till 3rd. Output would be [786, 2.23].

17.What is the output of print list[2:] if list = ['abcd', 786 , 2.23, 'john', 70.2]?

It will print elements starting from 3rd element. Output would be [2.23, 'john',

70.200000000000003].

18.What is the output of print tinylist * 2 if tinylist = [123, 'john']?

It will print list two times. Output would be [123, 'john', 123, 'john'].

19.What is the output of print list1 + list2, if list1 = ['abcd', 786 , 2.23, 'john', 70.2] and ist2 =

[123, 'john']?

It will print concatenated lists. Output would be ['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

20.What are tuples in Python?

A tuple is another sequence data type that is similar to the list. A tuple consists of a number of

values separated by commas. Unlike lists, however, tuples are enclosed within parentheses.

21.What is the difference between tuples and lists in Python?

The main differences between lists and tuples are − Lists are enclosed in brackets ([]) and their

elements and size can be changed, while tuples are enclosed in parentheses (()) and cannot be

updated. Tuples can be thought of as read-only lists.

22.What is the output of print tuple if tuple = ('abcd', 786 , 2.23, 'john', 70.2)?

It will print complete tuple. Output would be ('abcd', 786, 2.23, 'john', 70.200000000000003).

23.What is the output of print tuple[0] if tuple = ('abcd', 786 , 2.23, 'john', 70.2)?

It will print first element of the tuple. Output would be abcd.

24.What is the output of print tuple[1:3] if tuple = ('abcd', 786 , 2.23, 'john', 70.2)?

It will print elements starting from 2nd till 3rd. Output would be (786, 2.23).

25.What is the output of print tuple[2:] if tuple = ('abcd', 786 , 2.23, 'john', 70.2)?

It will print elements starting from 3rd element. Output would be (2.23, 'john',

70.200000000000003).

26.What is the output of print tinytuple * 2 if tinytuple = (123, 'john')?

It will print tuple two times. Output would be (123, 'john', 123, 'john').

27.What is the output of print tuple + tinytuple if tuple = ('abcd', 786 , 2.23, 'john', 70.2) and

tinytuple = (123, 'john')?

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 123

It will print concatenated tuples. Output would be ('abcd', 786, 2.23, 'john', 70.200000000000003,

123, 'john').

28.What are Python's dictionaries?

Python's dictionaries are kind of hash table type. They work like associative arrays or hashes found

in Perl and consist of key-value pairs. A dictionary key can be almost any Python type, but are

usually numbers or strings. Values, on the other hand, can be any arbitrary Python object.

29.How will you create a dictionary in python?

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using

square braces ([]).

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

30.How will you get all the keys from the dictionary?

Using dictionary.keys() function, we can get all the keys from the dictionary object.

print dict.keys() # Prints all the keys

31.How will you get all the values from the dictionary?

Using dictionary.values() function, we can get all the values from the dictionary object.

print dict.values() # Prints all the values

32.How will you convert a string to an int in python?

int(x [,base]) - Converts x to an integer. base specifies the base if x is a string.

33.How will you convert a string to a long in python?

long(x [,base]) - Converts x to a long integer. base specifies the base if x is a string.

34.How will you convert a string to a float in python?

float(x) − Converts x to a floating-point number.

35.How will you convert a object to a string in python?

str(x) − Converts object x to a string representation.

36.How will you convert a object to a regular expression in python?

repr(x) − Converts object x to an expression string.

37.How will you convert a String to an object in python?

eval(str) − Evaluates a string and returns an object.

38.How will you convert a string to a tuple in python?

tuple(s) − Converts s to a tuple.

39.How will you convert a string to a list in python?

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 124

list(s) − Converts s to a list.

40.How will you convert a string to a set in python?

set(s) − Converts s to a set.

41.How will you create a dictionary using tuples in python?

dict(d) − Creates a dictionary. d must be a sequence of (key,value) tuples.

42.How will you convert a string to a frozen set in python?

frozenset(s) − Converts s to a frozen set.

43.How will you convert an integer to a character in python?

chr(x) − Converts an integer to a character.

44.How will you convert an integer to an unicode character in python?

unichr(x) − Converts an integer to a Unicode character.

45.How will you convert a single character to its integer value in python?

ord(x) − Converts a single character to its integer value.

46.How will you convert an integer to hexadecimal string in python?

hex(x) − Converts an integer to a hexadecimal string.

47.How will you convert an integer to octal string in python?

oct(x) − Converts an integer to an octal string.

48.What is the purpose of ** operator?

** Exponent − Performs exponential (power) calculation on operators. a**b = 10 to the power 20

if a = 10 and b = 20.

49.What is the purpose of // operator?

// Floor Division − The division of operands where the result is the quotient in which the digits

after the decimal point are removed.

50.What is the purpose of is operator?

is − Evaluates to true if the variables on either side of the operator point to the same object and

false otherwise. x is y, here is results in 1 if id(x) equals id(y).

51.What is the purpose of not in operator?

not in − Evaluates to true if it does not finds a variable in the specified sequence and false

otherwise. x not in y, here not in results in a 1 if x is not a member of sequence y.

52.What is the purpose break statement in python?

break statement − Terminates the loop statement and transfers execution to the statement

immediately following the loop.

53.What is the purpose continue statement in python?

continue statement − Causes the loop to skip the remainder of its body and immediately retest its

condition prior to reiterating.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 125

54.What is the purpose pass statement in python?

pass statement − The pass statement in Python is used when a statement is required syntactically

but you do not want any command or code to execute.

55.How can you pick a random item from a list or tuple?

choice(seq) − Returns a random item from a list, tuple, or string.

56.How can you pick a random item from a range?

randrange ([start,] stop [,step]) − returns a randomly selected element from range(start, stop, step).

57.How can you get a random number in python?

random() − returns a random float r, such that 0 is less than or equal to r and r is less than 1.

58.How will you set the starting value in generating random numbers?

seed([x]) − Sets the integer starting value used in generating random numbers. Call this function

before calling any other random module function. Returns None.

59.How will you randomizes the items of a list in place?

shuffle(lst) − Randomizes the items of a list in place. Returns None.

60.How will you capitalizes first letter of string?

capitalize() − Capitalizes first letter of string.

61.How will you check in a string that all characters are alphanumeric?

isalnum() − Returns true if string has at least 1 character and all characters are alphanumeric and

false otherwise.

62.How will you check in a string that all characters are digits?

isdigit() − Returns true if string contains only digits and false otherwise.

63.How will you check in a string that all characters are in lowercase?

islower() − Returns true if string has at least 1 cased character and all cased characters are in

lowercase and false otherwise.

64.How will you check in a string that all characters are numerics?

isnumeric() − Returns true if a unicode string contains only numeric characters and false otherwise.

65.How will you check in a string that all characters are whitespaces?

isspace() − Returns true if string contains only whitespace characters and false otherwise.

66.How will you check in a string that it is properly titlecased?

istitle() − Returns true if string is properly "titlecased" and false otherwise.

67.How will you check in a string that all characters are in uppercase?

isupper() − Returns true if string has at least one cased character and all cased characters are in

uppercase and false otherwise.

68.How will you merge elements in a sequence?

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 126

join(seq) − Merges (concatenates) the string representations of elements in sequence seq into a

string, with separator string.

69.How will you get the length of the string?

len(string) − Returns the length of the string.

70.How will you get a space-padded string with the original string left-justified to a total of

width columns?

ljust(width[, fillchar]) − Returns a space-padded string with the original string left-justified to a

total of width columns.

71.How will you convert a string to all lowercase?

lower() − Converts all uppercase letters in string to lowercase.

72.How will you remove all leading whitespace in string?

lstrip() − Removes all leading whitespace in string.

73.How will you get the max alphabetical character from the string?

max(str) − Returns the max alphabetical character from the string str.

74.How will you get the min alphabetical character from the string?

min(str) − Returns the min alphabetical character from the string str.

75.How will you replaces all occurrences of old substring in string with new string?

replace(old, new [, max]) − Replaces all occurrences of old in string with new or at most max

occurrences if max given.

76.How will you remove all leading and trailing whitespace in string?

strip([chars]) − Performs both lstrip() and rstrip() on string.

77.How will you change case for all letters in string?

swapcase() − Inverts case for all letters in string.

78.How will you get titlecased version of string?

title() − Returns "titlecased" version of string, that is, all words begin with uppercase and the rest

are lowercase.

79.How will you convert a string to all uppercase?

upper() − Converts all lowercase letters in string to uppercase.

80.How will you check in a string that all characters are decimal?

isdecimal() − Returns true if a unicode string contains only decimal characters and false otherwise.

81.What is the difference between del() and remove() methods of list?

To remove a list element, you can use either the del statement if you know exactly which

element(s) you are deleting or the remove() method if you do not know.

82.What is the output of len([1, 2, 3])?

3.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 127

83.What is the output of [1, 2, 3] + [4, 5, 6]?

[1, 2, 3, 4, 5, 6]

84.What is the output of ['Hi!'] * 4?

['Hi!', 'Hi!', 'Hi!', 'Hi!']

85.What is the output of 3 in [1, 2, 3]?

True

86.What is the output of for x in [1, 2, 3]: print x?

1

2

3

87.What is the output of L[2] if L = [1,2,3]?

3, Offsets start at zero.

88.What is the output of L[-2] if L = [1,2,3]?

1, Negative: count from the right.

89.What is the output of L[1:] if L = [1,2,3]?

2, 3, Slicing fetches sections.

90.How will you compare two lists?

cmp(list1, list2) − Compares elements of both lists.

91.How will you get the length of a list?

len(list) − Gives the total length of the list.

92.How will you get the max valued item of a list?

max(list) − Returns item from the list with max value.

93.How will you get the min valued item of a list?

min(list) − Returns item from the list with min value.

94.How will you get the index of an object in a list?

list.index(obj) − Returns the lowest index in list that obj appears.

95.How will you insert an object at given index in a list?

list.insert(index, obj) − Inserts object obj into list at offset index.

96.How will you remove last object from a list?

list.pop(obj=list[-1]) − Removes and returns last object or obj from list.

97.How will you remove an object from a list?

list.remove(obj) − Removes object obj from list.

98.How will you reverse a list?

list.reverse() − Reverses objects of list in place.

99.How will you sort a list?

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 128

list.sort([func]) − Sorts objects of list, use compare func if given.

100.What is lambda function in python?

‘lambda’ is a keyword in python which creates an anonymous function. Lambda does not contain

block of statements. It does not contain return statements.

101.What we call a function which is incomplete version of a function?

Stub.

When a function is defined then the system stores parameters and local variables in an area of

memory. What this memory is known as?

Stack.

102.A canvas can have a foreground color? (Yes/No)

Yes.

103.Is Python platform independent?

No

There are some modules and functions in python that can only run on certain platforms.

104.Do you think Python has a complier?

Yes

Yes it has a complier which works automatically so we don’t notice the compiler of python.

105.What are the applications of Python?

Django (Web framework of Python).

2. Micro Frame work such as Flask and Bottle.

3. Plone and Django CMS for advanced content Management.

106.What is the basic difference between Python version 2 and Python version 3?

Table below explains the difference between Python version 2 and Python version 3.

S.No Section Python Version2 Python Version3

1. Print Function Print command can be

used without parentheses.

Python 3 needs parentheses to print

any string. It will raise error

without parentheses.

2. Unicode ASCII str() types and

separate Unicode() but

there is no byte type code

in Python 2.

Unicode (utf-8) and it has two byte

classes −

• Byte

• Bytearray S.

3. Exceptions Python 2 accepts both Python 3 raises a SyntaxError in

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 129

new and old notations of

syntax.

turn when we don’t enclose the

exception argument in parentheses.

4. Comparing

Unorderable

It does not raise any error. It raises ‘TypeError’ as warning if

we try to compare unorderable

types.

107.Which programming Language is an implementation of Python programming language

designed to run on Java Platform?

Jython

(Jython is successor of Jpython.)

108.Is there any double data type in Python?

No

109.Is String in Python are immutable? (Yes/No)

Yes.

110.Can True = False be possible in Python?

No.

111.Which module of python is used to apply the methods related to OS.?

OS.

112.When does a new block begin in python?

A block begins when the line is intended by 4 spaces.

113.Write a function in python which detects whether the given two strings are anagrams or

not.

def check(a,b):

 if(len(a)!=len(b)):

 return False

 else:

 if(sorted(list(a)) == sorted(list(b))):

 return True

 else:

 return False

114.Name the python Library used for Machine learning.

Scikit-learn python Library used for Machine learning

115.What does pass operation do?

Pass indicates that nothing is to be done i.e. it signifies a no operation.

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 130

116.Name the tools which python uses to find bugs (if any).

Pylint and pychecker.

117.Write a function to give the sum of all the numbers in list?

Sample list − (100, 200, 300, 400, 0, 500)

Expected output − 1500

Program for sum of all the numbers in list is −

def sum(numbers):

 total = 0

 for num in numbers:

 total+=num

 print(''Sum of the numbers: '', total)

sum((100, 200, 300, 400, 0, 500))

We define a function ‘sum’ with numbers as parameter. The in for loop we store the sum of all the

values of list.

118.Write a program in Python to reverse a string without using inbuilt function reverse

string?

Program to reverse a string in given below −

def string_reverse(str1):

rev_str = ' '

index = len(str1) #defining index as length of string.

while(index>0):

 rev_str = rev_str + str1[index-1]

 index = index-1

 return(rev_str)

print(string_reverse('1tniop'))

First we declare a variable to store the reverse string. Then using while loop and indexing of string

(index is calculated by string length) we reverse the string. While loop starts when index is greater

than zero. Index is reduced to value 1 each time. When index reaches zero we obtain the reverse of

string.

119.Write a program to test whether the number is in the defined range or not?

Program is −

def test_range(num):

MCET ADVANCED COMPUTER SKILLS LAB MANUAL

Page 131

 if num in range(0, 101):

 print(''%s is in range''%str(num))

 else:

 print(''%s is not in range''%str(num))

Output −

test_range(101)

101 is not in the range

To test any number in a particular range we make use of the method ‘if..in’ and else condition.

120.Write a program to calculate number of upper case letters and number of lower case

letters?

Test on String: ''Tutorials POINT''

Program is −

def string_test(s):

a = { ''Lower_Case'':0 , ''Upper_Case'':0} #intiail count of lower and upper

for ch in s: #for loop

 if(ch.islower()): #if-elif-else condition

 a[''Lower_Case''] = a[''Lower_Case''] + 1

 elif(ch.isupper()):

 a[''Upper_Case''] = a [''Upper_Case''] + 1

 else:

 pass

print(''String in testing is: '',s) #printing the statements.

print(''Number of Lower Case characters in String: '',a[''Lower_Case''])

print(''Number of Upper Case characters in String: '',a[''Upper_Case''])

Output −

string_test(''Tutorials POINT'')

String in testing is: Tutorials POINT

Number of Lower Case characters in String: 8

Number of Upper Case characters in String: 6

We make use of the methods .islower() and .isupper(). We initialise the count for lower and upper.

Using if and else condition we calculate total number of lower and upper case characters

